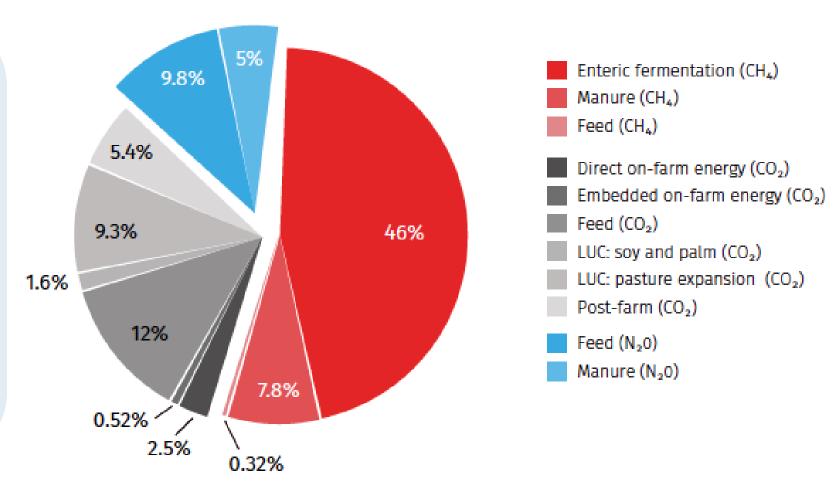


Effects of ten freshwater microalgae on in vitro ruminal methane production and digestibility

Y. Li¹, M. Bagnoud², Y. Zhang¹, K. Wang¹, L. Punčochářová³, C. Kunz¹, S. Dubois⁴, R. Peng¹, A. B. Brahier², F. Wahl² and M. Niu¹

¹Animal Nutrition Group, ETH Zürich, Zürich, Switzerland

²Microbial Food Systems, Agroscope, Bern, Switzerland


³Institute of Food Science and Biotechnology, Brno University of Technology, Brno, Czech Republic

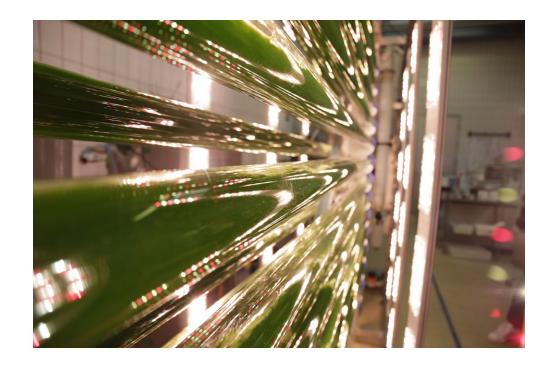
⁴Methods Development and Analytics Research Division, Agroscope, Possieux, Switzerland

Enteric methane (CH₄) emission from Agrifood systems

- Agrifood systems accounts for 1/3 of total anthropogenic greenhouse gas (GHG) emission
- Almost half of Agrifood system GHG is enteric CH₄
- CH₄ atmospheric half-life:
 8.6 years (Muller and Muller, 2017)

Can microalgae supplement reduce CH₄ emission?

In vitro CH₄ inhibition (% inhibition, dosage):


Euglena gracillis (9.2~48.5%, 5~100% DM)

Nannochloropsis gaditana (10.2%, 16% DM)

Phaeodactylum tricornutum (16.6%, 16% DM)

Schizochytrium sp. (7.8%, 6.5% DM)

Aquagrow-DHA (*Crypthecodinium cohnii* extract), (23~80.6%, 5~29.3%DM)

How microalgae may mitigate CH₄ production, and other benefits

- Unsaturated fatty acids (biohydrogenation)
- Rich source of protein
- Does not need arable land or potable water

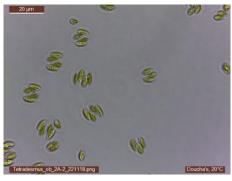
Biohydrogenation as alternative H₂ sink

Freshwater Microalgae selected for this study

Auxenochlorella protothecoides (Ap) 38-41% lipid, 19.4% PUFA

Chlamydomonas pulvinate (Cp)

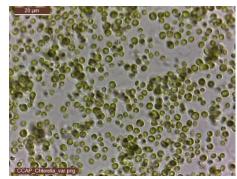
C. malina 32.5% lipid, 52.9% PUFA


Euglena mutabilis (Em)

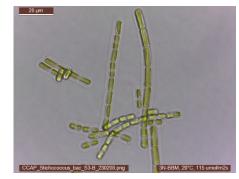
E. gracilis 23.4% PUFA

Parachlorella kessleri (Pk)

24.1% lipid, 51.4% PUFA



Tetradesmus obliquus (To)


12.6% lipid, 39.4% PUFA

Chlorella luteoviridis (Cl) 9.9% lipid, 40.7% PUFA

Chlorella variabilis (Cv) 22.6% lipid, 38% PUFA

Stichococcus bacillaris (Sb) 24% lipid, 33% PUFA

Tetradesmus acuminatus (Ta) 42.6% lipid, 26.6% PUFA

Tetraselmis gracilis (Tg) 11.1% lipid, 17.1% PUFA 5

Cultivation and in vitro testing

Culture Microalgae (2% CO₂, light at 115 μmol/m².s,16 h:8 h day/night, 110 rpm, optimal temperature, pH, most adapted nutrient media)

Biomass collection (Centrifugation and freeze-drying)

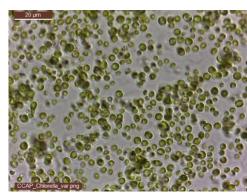
1

Chemical analyses

Hohenheim Gas
Test (24 h, 15%
DM basal diet
substitution)

Nutritional properties of cultured microalgae

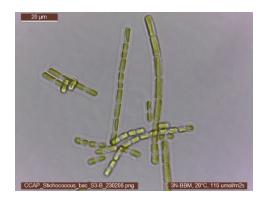
Auxenochlorella protothecoides (Ap) 17.5% CP, 10.3% TFA, 6.08% PUFA


Highest

Omega-3

Chlorella luteoviridis (Cl)

Chlamydomonas pulvinate (Cp) 44.0% CP, 11.8% TFA, 6.08% PUFA


Chlorella variabilis (Cv)

48.5% CP, 10.3% TFA, 3.91% PUFA

Euglena mutabilis (Em)

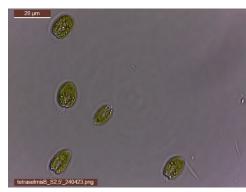
44.5% CP, 18.0% TFA, 7.51% PUFA

Stichococcus bacillaris (Sb)

38.1% CP, 10.9% TFA, 5.31% PUFA

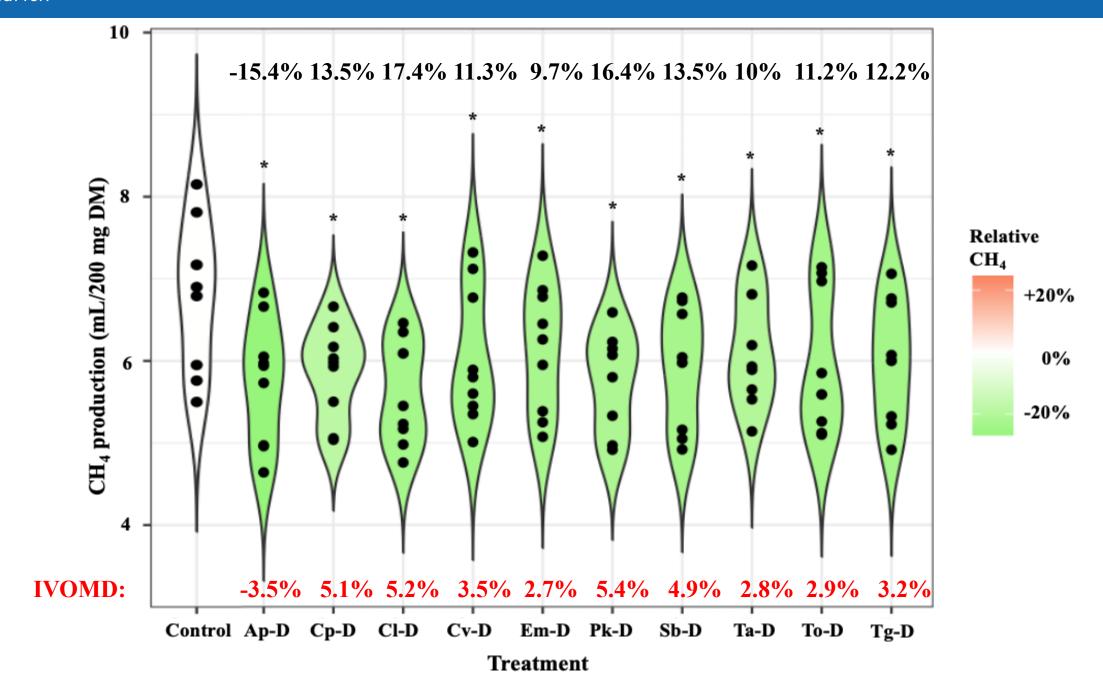
Parachlorella kessleri (Pk)

44.3% CP, 13.5% TFA, 7.55% PUFA


Tetradesmus acuminatus (Ta)

39.7% CP, 10.5% TFA, 4.29% PUFA

Tetradesmus obliquus (To)

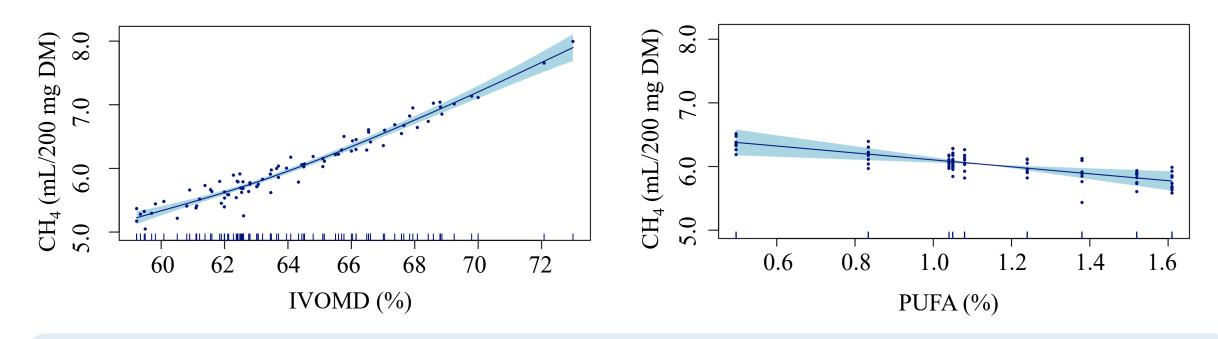

58.7% CP, 13.1% TFA, 4.62% PUFA

Tetraselmis gracilis (Tg)

30.7% CP, 12.6% TFA, 4.18% PUFA 7

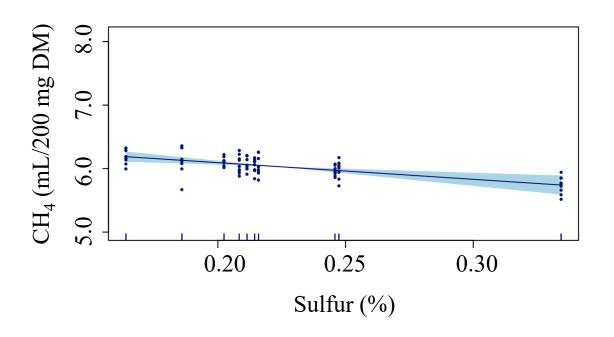
46.2% CP, 10.3% TFA, 7.12% PUFA

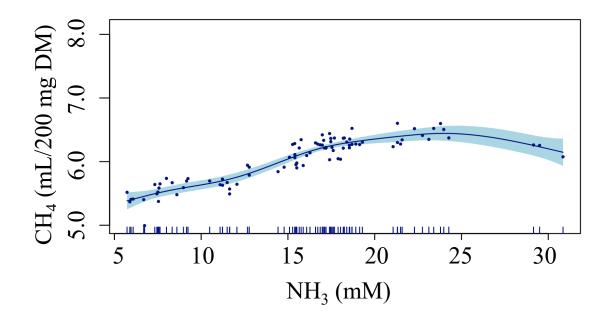
Generalized additive models (GAMs) – a semi-parametric approach


• GAMs are smooth semi-parametric models of the form:

$$g(\mathbb{E}[y|X]) = \beta_0 + f_1(X_1) + f_2(X_2, X_3) + \dots + f_M(X_N)$$

- GAMs extend generalized linear models by allowing non-linear functions of features
- Since the model is additive, it is easy to examine the marginal effect of each variable


IVOMD and PUFA content is correlated with CH₄ production



- Positive correlation between CH₄ production and IVOMD
- Negative correlation between CH₄ production and PUFA, but....lipid extracted *Chlorella vulgaris, Micratinium reisseri, Nannochloris bacillaris* and *Tetracystis sp.* reduced CH₄.

Sulfur and NH₃ content is correlated with CH₄ production

- Scenedesmus sp. AMDD increased sulfate-reducing bacteria in anaerobic food sludge
- Increasing NH₃ concentration up to 25 mM were not inhibitory to methanogenesis

Conclusions and perspectives

- Freshwater microalgae supplementation could mitigate enteric CH₄ emission, with mild reduction in IVOMD
- IVOMD is positively related to in vitro CH₄ production
- PUFA and sulfur content is negatively related to in vitro CH₄ production
- Tetradesmus obliquus with its high growth speed and CP, moderate PUFA content could be a good supplement for ruminant feed
- Warrants further investigation and in vivo trial

Thank you

Agroscope

CoBiEM

Collection of Biotechnologically Exploitable Microalgae

AgroVet Strickhof

Mutian Niu mutian.niu@usys.ethz.ch

