

Effect of conservation length on fermentation characteristics of teff silage as alternative forage for Mediterranean livestock farming systems

R. Primi, R. Spina, F. Luziatelli, M. Ruzzi, U. Bernabucci, F. Manganello, C. Evangelista, F. Lazzari, R. Ruggeri, F. Rossini, A. Benelli, R. Moscetti, A. Brunetti, I. Bottoni, S. Ceci, G. Fabbrizi, P. P. Danieli, B. Ronchi

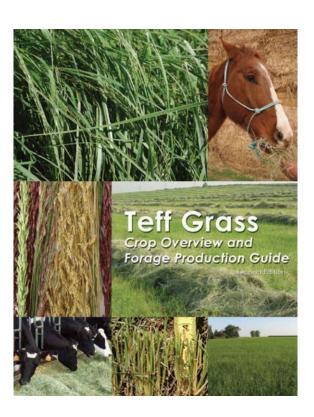
agritech

National Center for Technology in Agriculture 1st September 2024

Session 5. Innovative and emerging feed and forage resources

Introduction

- Climate change impacts ruminant livestock farming by affecting feed availability and quality, requiring adaptation strategies to sustain production (Benitez-Alfonso et al., 2023).
- **Drought-tolerant forage crops** are critical for meeting animal nutritional needs in arid and semi-arid (i.e., Mediterranean) regions, potentially replacing vulnerable conventional crops (Kakabouki *et al.*, 2021).
- **Teff** [*Eragrostis tef*, (Zucc.) Trotter, Poaceae], a minor ("orphan") warm-season C4 plant traditionally cultivated in Ethiopia and Eritrea, have the potential to offers high yield (~5.5 t DM/ha, Ruggeri *et al.*, 2024) and quality as a **summer forage**, is adaptable to **various climates**, and can serves as an **emergency or double crop** option immediately following wheat or barley (Woldeyohanne *et al.*, 2020)
- Teff is a **fast-growing crop** (it can provide a first harvest 40–45 days after sowing and is able to persist for over 5 months with multiple mowings when an amount of water is available), relatively **pest and disease resistant** (Kakabouki *et al.*, 2021).



Introduction

- Tef is gaining popularity as an alternative summer forage grass in various regions worldwide, including Australia, Canada, Kenya, the USA, South Africa, India, Pakistan, Yemen, and South America.
- In Europe, it is marginally cultivated in the Netherlands and in Spain

Very few studies available for nutritional characteristics

Table 4. Chemical composition of a composite sample of Moxie teff harvested at either the early-heading (EH) or late-heading (LH) stages of maturity

Item	EH	LH
DM	84.1	81.9
Nutrient content, % DM		
OM	86.9	87.15
CP	17.6	15.4
Starch	0.40	0.65
ADF	35.2	35.6
NDF	58.6	60.0
TDN	58.6	57.7
Calcium, %	0.63	0.67
Phosphorus, %	0.29	0.27
Magnesium, %	0.28	0.28
Potassium, %	2.55	2.31
Sulfur, %	0.28	0.29
Sodium, %	0.06	0.05
Chloride, %	0.51	0.43
Iron, mg/kg	723	439
Manganese, mg/kg	59.5	58.5
Zinc, mg/kg	38.0	35.0
Copper, mg/kg	11.0	11.5
Nitrate ion, %	1.66	1.34

Ream *et al.* 2020. Applied Animal Science, Volume 36, Issue 5

Aim of the research

- Our study was aimed to assess the fermentative characteristics of whole crop teff silage and to examine the impact of different (short) conservation periods and the effects of various inoculants on the aerobic stability, fermentation profile, and microbial count of silages.
- Here we present only results of different conservation periods (30 and 60 days of ensiling, without inoculants)

Material and methods

• Teff var. Moxie® (Barenbrug, The Netherlands) seeds were planted <u>as second</u> <u>crop after wheat</u> harvesting at the experimental farm of the University of Tuscia, Viterbo, central Italy, altitude 310 m a.s.l.):

• Sowing: July 1, 2022

Fertilization: 100 kg N/ha

Water supply: 200 mm.

- Whole teff crop was harvested at approximately 30% dry matter content and chopped to a theoretical cutting length of 4 cm.
- No pre-wilting

Material and methods

- 5 samples of fresh forage were analyzed, for water activity, chemical profile and microbial count (Borreani et al., 2014).
- The chopped material was ensiled in quadruplicate in 20 L plastic silos with gas-release lids (density: 400 kg/m³) and a temperature logger inside.
- Silos were opened 30 and 60 days after ensiling.
- 8 samples of silages were analyzed, for water activity, chemical profile, microbial count, and aerobic stability* (Borreani et al., 2014).
- Silos weights were measured pre and post ensiling to calculate weight and DM losses.

^{*}Aerobic stability was defined as the number of hours the silage remained stable before its temperature increased by 2 °C above room temperature (Ranjit and Kung, 2000).

Material and methods

Statistical data analysis

- Two-sample Student's unpaired t-test was performed to compare the means between the two groups (30 vs 60 days of conservation periods)
- Correlations between the fermentative, chemical, and microbial profile were determined using Pearson's test
- *P*-values below 0.05 were considered statistically significant.
- All statistics were performed with XLSTAT® (Lumivero, 2024)

Chemical and microbial characteristics of teff silages at ensiling

Parameters	Mean	SD	Min	Max
Dry matter (%)	30.6	0.6	30.2	31.3
рН	6.1	0.0	6.1	6.1
Water activity (a _w)	1.0	0.0	1.0	1.0
Buffering capacity (mEq/kg DM)	5.5	0.0	5.4	5.5
Crude protein (% of DM)	13.1	0.2	12.8	13.3
Ash (% of DM)	11.8	0.2	11.5	12.1
Starch (% of DM)	6.0	0.6	5.3	6.7
Ether extract (% of DM)	1.4	0.1	1.4	1.6
Crude fibre (% of DM)	31.8	1.6	29.7	33.8
aNDFom (% of DM)	65.3	0.3	64.8	65.6
ADF (% of DM)	52.0	2.8	48.8	56.1
Hemicelluloses (% DM)	14.2	2.2	11.1	16.7
ADL (% of DM)	7.7	0.2	7.5	8.1
Nitrogen-free extract (% of DM)	41.9	1.7	40.0	44.5
Non-fiber carbohydrates (% of DM)	8.4	0.4	8.0	8.9
Lactic acid bacteria (log ₁₀ cfu/g)	5.5	0.2	5.3	5.8
Yeast (log ₁₀ cfu/g)	2.5	1.2	0.0	3.3
Moulds (log ₁₀ cfu/g)	2.9	2.3	0.0	4.8
RESULTS				

Native microorganisms

Results

Temperature variation during ensiling (fermentation + stable storage phase in the silo; 0-60 days)

All silages were well fermented.

DM and nutritional parameters of teff silage after the two conservation periods

Parameters	30 days	60 days	P-value
Dry Matter (DM) (%)	28.08 (27.56-28.46)	27.19 (26.57-27.63)	0.001
Ash (% of DM)	10.91 (10.48-11.13)	11.10 (10.89-11.44)	0.097
Crude protein (% of DM)	14.53 (13.16-15.57)	8.04 (7.23-8.78)	<0.0001
Ether extract (% of DM)	2.14 (1.97-2.26)	1.85 (1.54-2.20)	0.006
Crude fibre (% of DM)	32.09 (31.17-33.31)	32.51 (32.10-33.31)	0.135
aNDFom (% of DM)	61.39 (59.96-62.56)	62.12 (60.17-63.28)	0.182
ADF (% of DM)	49.37 (46.84-54.15)	50.10 (48.69-51.75)	0.533
Hemicelluloses (% of DM)	12.02 (5.96-15.58)	12.02 (9.32-13.41)	0.999
ADL (% of DM)	6.90 (6.50-7.83)	7.63 (7.17-8.06)	0.002
Nitrogen-free extract (% of DM)	40.34 (37.86-41.62)	46.52 (45.91-47.29)	<0.0001
Non-fiber carbohydrates (% of DM)	11.03 (9.57-12.32)	16.90 (15.78-18.29)	1 <0.0001
Starch (% of DM)	8.85 (7.39-11.39)	7.02 (6.18-8.21)	0.013

RESULTS

Aerobic stability, microbiology and weight/DM loss of teff silage at different conservation periods

Parameters	30 days	60 days	P-value
рН	4.36 (4.33-4.41)	4.40 (4.36-4.41)	0.027
Water activity (a _w)	0.98 (0.98-0.99)	0.98 (0.98-0.98)	0.027
Buffering capacity (mEq/Kg DM)	28.13 (27.25-29.90)	43.40 (34.90-50.00)	0.000
Aerobic stability (h)	511.50 (363.00-740.00)	617.00 (530.00-740.00)	0.143
LAB (Log ₁₀ CFU/g)	7.44 (6.95-7.80)	7.33 (7.11-7.52)	0.257
Yeasts (Log ₁₀ CFU/g)	2.19 (1.86-2.56)	0.49 (0.00-1.43)	<0.0001
Moulds (Log ₁₀ CFU/g)	0.28 (0.00-1.26)	0.24 (0.00-0.95)	0.878
Lactic acid (relative %)	38.07 (36.99-39.47)	19.46 (5.08-38.16)	0.006
Nitrate (Mg/L)	24.13 (10.00-38.00)	34.13 (24.00-45.00)	0.049
Ammonium (Mg/L)	70.38 (67.00-73.00)	68.13 (60.00-73.00)	0.186
Weight loss (%)	0.82 (0.72-0.95)	0.83 (0.73-0.91)	0.802
DM loss (%)	10.72 (7.68; 9.00)	12.13 (10.44; 13.93)	0.000

RESULTS

Pearson's correlation coefficients of chemical and microbiological characteristics of teff silages

Variables	Days	DM	Ash	CP	Fat	CF	aNDFom	ADF	Hemicel.	ADL	NFE	NFC	Starch	рН	Aw	capacity	stability	LAB	Yeast	Molds	Nitrate	um	loss	(%)
DM	-0,755										Aside	from t	he effe	ect of c	onser	vation	period	!						
Ash	0,429	-0,334									• tl	he pH v	vas ne	gativel	y corre	elated v	with th	e CP a	nd pos	itively	correla	ated to	ash a	nd
СР	-0,980	0,669	-0,404									IFC												
Fat	-0,656	0,737	-0,220	0,607								egative										,	•	n.a
CF	0,391	-0,506	0,270	-0,404	-0,242							itroger apacity		extract	anu n	on-neu	itrai de	tergen	it liber	Carbo	nyurate	e anu L	unem	rig
aNDFom	0,351	-0,300	-0,137	-0,365	-0,617	0,082						he CP c	•	was p	ositive	elv corr	elated	with tl	he DM	, fat, s	tarch, v	east c	ount, [OM
ADF	0,171	0,177	0,352	-0,175	-0,098	-0,258	-0,046					oss and		•		•							,	
Hemicelluloses	0,000	-0,286	-0,370	-0,002	-0,178	0,263	0,470	-0,903				actic ac		•	•				ber fra	ctions	and bu	uffering	g capa	city
ADL	0,712	-0,643	0,086	-0,770	-0,543	0,438	0,457	-0,121	0,303			nd pos	•								5			
NFE	0,967	-0,637	0,321	-0,983	-0,643	0,248	0,417	0,208	-0,005	0,756	• D)M loss	es wer	e foun	d to be	e stron	gly cor	related	positi	ively to	the D	IVI cont	tent	
NFC	0,949	-0,645	0,424	-0,963	-0,499	0,404	0,109	0,185	-0,117	0,704	0,936													
Starch	-0,604	0,187	-0,188	0,676	0,555	-0,081	-0,583	-0,376	0,081	-0,604	-0,714	-0,555												
рН	0,550	-0,487	0,576	-0,501	-0,291	0,236	-0,243	0,420	-0,476	0,204	0,461	0,599	-0,144											
Aw	-0,577	0,165	-0,612	0,567	0,230	-0,165	0,061	-0,819	0,750	-0,132	-0,534	-0,601	0,458	-0,635										
Buffering capacity	0,890	-0,844	0,389	-0,863	-0,890	0,452	0,515	0,154	0,086	0,739	0,854	0,788	-0,636	0,505	-0,452									
Aerobic stability	0,383	-0,460	-0,040	-0,470	-0,265	0,718	0,197	-0,368	0,410	0,755	0,387	0,459	-0,253	0,128	0,086	0,467								
LAB	-0,301	-0,009	0,063	0,391	-0,259	-0,377	0,124	-0,156	0,191	-0,488	-0,327	-0,445	0,285	-0,118	0,345	-0,090	-0,477							
Yeast	-0,868	0,670	-0,391	0,833	0,597	-0,286	-0,389	-0,075	-0,101	-0,598	-0,831	-0,777	0,454	-0,498	0,473	-0,774	-0,287	0,086						
Moulds	-0,042	0,159	-0,038	-0,019	0,371	0,397	-0,070	-0,202	0,148	-0,085	-0,071	0,020	0,113	-0,106	0,048	-0,168	0,287	-0,166	0,076					
Nitrate	0,499	-0,225	0,373	-0,456	-0,563	-0,092	0,418	0,421	-0,193	0,056	0,503	0,363	-0,610	0,207	-0,482	0,509	-0,365	0,183	-0,338	-0,268				
Ammonium	-0,348	0,156	-0,018	0,396	0,237	-0,012	-0,346	-0,021	-0,130	-0,170	-0,424	-0,323	0,161	-0,253	0,089	-0,302	-0,102	-0,070	0,404	-0,128	-0,287			
Weight loss	-0,068	0,095	0,205	0,183	-0,040	-0,611	-0,015	0,375	-0,337	-0,415	-0,097	-0,202	-0,005	0,000	-0,176	-0,120	-0,870	0,408	0,077	-0,439	0,558	0,227		
DM loss	-0,794	0,983	-0,332	0,728	0,763	-0,542	-0,366	0,175	-0,312	-0,680	-0,693	-0,688	0,242	-0,481	0,189	-0,884	-0,517	0,006	0,736	0,105	-0,242	0,291	0,192	
Lactic acid	-0,725	0,668	-0,245	0,735	0,865	-0,400	-0,649	-0,059	-0,226	-0,655	-0,738	-0,615	0,615	-0,314	0,283	-0,902	-0,473	-0,053	0,710	0,096	-0,470	0,531	0,269	0,771

Buffering Aerobic

Weight

DM loss

Discussions

- Our findings indicate that teff can be successfully ensiled without pre-wilting or inoculants,
 achieving stable fermentation even at 30% dry matter.
- The longer conservation periods led to increased aerobic stability and better preservation of carbohydrates, though there was a reduction in crude protein content.
- These results align with previous studies, such as those by Ferrero et al. (2019), which observed similar trends in dry matter losses and nutrient preservation over extended conservation periods.

Future directions

- We are currently conducting further studies to
 - assess the effects of various inoculants (i.e., Pediococcus pentosaceus, Lactobacillus plantarum, Lactobacillus hilgardii, Lactobacillus buchneri, Xylanase, Beta-glucanase)
 - perform a comprehensive metabolomics analysis to better understand the metabolic changes during ensiling
- Further studies are expected to evaluate:
 - the fermentation characteristics in vitro and under farm conditions
 - the effect on livestock production through *in vivo* studies

Conclusions

- Teff shows great promise as a sustainable forage option for Mediterranean livestock systems, particularly in regions affected by climate change.
- The ability to produce high-quality silage without the need for extensive inputs makes teff a valuable crop for the future.

Thanks for your kind attention

Any questions?

This study was carried out within the Agritech National Research Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/2022, CN00000022). This manuscript reflects only the authors' views and opinions, neither the European Union nor the European Commission can be considered responsible for them.

