













# Extruded or Enzyme-Treated *Chlorella vulgaris* in Broilers Diets: Effects on Performance and Digesta Viscosity

A.R. MENDES, C.F. MARTINS, D.F.P. CARVALHO, O. MADACUSSENGUA, M.P. SPÍNOLA, M.M. COSTA, J.M. PESTANA, J.I. FERREIRA, A.M. FONTES, A.M. ALMEIDA, J.A.M. PRATES, M. LORDELO



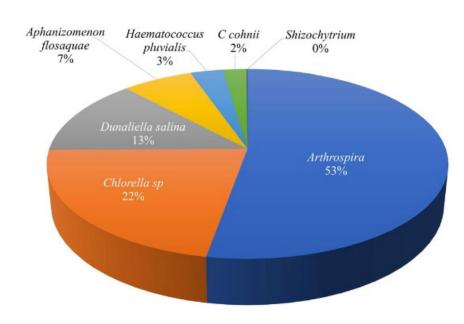
## Outline

- 1. Background:
  - Why incorporate Chlorella vulgaris into broiler diets?
  - Challenges to address
  - Objectives
- 2. Materials and methods
  - Digestibility study
  - Animal trial
- 3. Results and discussion
  - Effect on performance
  - Effect on digesta viscosity
- 4. Conclusions
- 5. In the future...



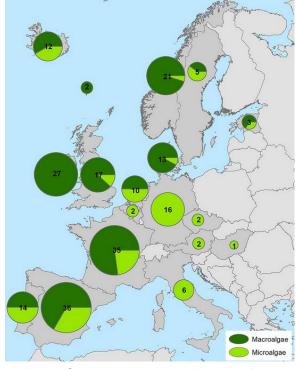
## Why incorporate *Chlorella vulgaris* into broiler diets?

Chlorella vulgaris is a protein-rich microalga, frequently used as a feed additive in poultry production.


| Nutritional Composition          |           |  |  |  |
|----------------------------------|-----------|--|--|--|
| Crude protein (%)                | 13.6–65.5 |  |  |  |
| Crude carbohydrates (%)          | 8.08–65.0 |  |  |  |
| Non-fibre carbohydrates (starch) | 2.00-4.41 |  |  |  |
| Crude fibre (%)                  | 1.63–5.98 |  |  |  |
| Ash (%)                          | 6.30–27.3 |  |  |  |
| Crude fat (%)                    | 5.10–19.7 |  |  |  |

Adapted from Spinola, et al., 2023

- ✓ High levels of fatty acids, particularly Eicosapentaenoic Acid
   (EPA) and Docosahexaenoic Acid (DHA)
- ✓ High levels of **vitamins**, particularly Vitamin **B12**, Vitamin **E**, and **beta-carotene** 
  - ✓ Contains all essential amino acids
  - Contains bioactive peptides and polysaccharides
  - Rich in natural pigments, particularly chlorophyll and carotenoids
    - ✓ High antioxidant capacity


## Why incorporate *Chlorella vulgaris* into broiler diets?

Chlorella vulgaris is a protein-rich microalga, frequently used as a feed additive in poultry production.



Annual commercial production of the major genera of microalgae worldwide

Saadaoui, et al., 2021



Number of companies producing algae

Araújo, et al., 2021

## Challenges to address



## Objectives

Chlorella vulgaris has recalcitrant cell walls that hinder efficient digestion and absorption in broilers

Incorporate *Chlorella vulgaris* as an ingredient in broiler diets at a 20% inclusion level



To evaluate enzymatic treatment and extrusion effects





Effects animal performance

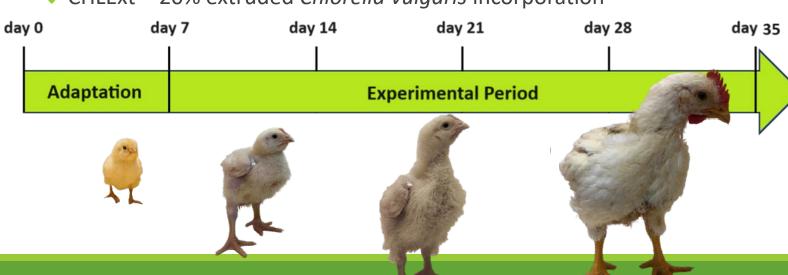
Effects on digesta viscosity

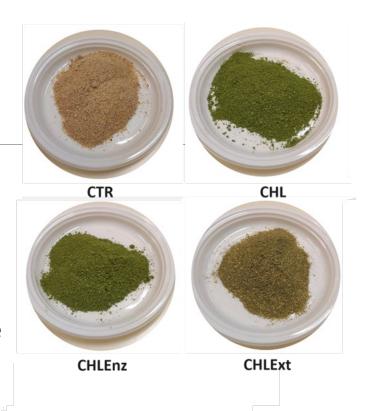
To our knowledge, no studies have reported a 20% incorporation in broiler diets with additional treatments to enhance digestibility





## Digestibility Study


| Item                     | C                                     | hlorella vulgaris | Extruded <i>C. vulgaris</i> |                           |  |  |
|--------------------------|---------------------------------------|-------------------|-----------------------------|---------------------------|--|--|
| TME (Kcal/kg dry)        |                                       | 3534              | 3656                        |                           |  |  |
| <b>Crude Protein (%)</b> | 29.0                                  |                   | 30.5                        |                           |  |  |
| Aminoacids               | Content (%) Average Digestibility (%) |                   | Content (%)                 | Average Digestibility (%) |  |  |
| Arginine                 | 1.960                                 | 89.7              | 2.010                       | 89.4                      |  |  |
| Glycine                  | 1.330                                 | 49.8              | 1.360                       | 63.4                      |  |  |
| Histidine                | 0.530                                 | 82.2              | 0.540                       | 82.0                      |  |  |
| Isoleucine               | 0.970                                 | 78.7              | 1.040                       | 80.9                      |  |  |
| Lysine                   | 2.500                                 | 66.6              | 2.510                       | 73.0                      |  |  |
| Methionine               | 0.550                                 | 85.1              | 0.560                       | 87.5                      |  |  |
| Phenylalanine            | 1.080                                 | 78.4              | 1.140                       | 80.2                      |  |  |
| Threonine                | 1.050                                 | 78.2              | 1.090                       | 81.1                      |  |  |
| Tryptophan               | 0.410                                 | 94.4              | 0.420                       | 95.5                      |  |  |
| Valine                   | 1.490                                 | 81.4              | 1.570                       | 84.7                      |  |  |
| Total                    | 24.4                                  |                   | 25.3                        |                           |  |  |

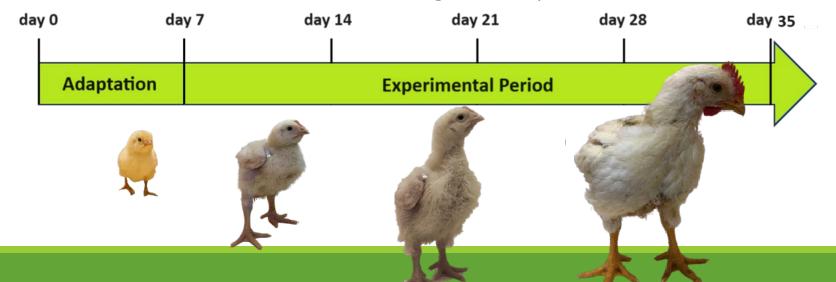

Mendes, et al., unpublished data

### Live animal trial

120 one-day-old Ross 308 male chicks were distributed across four experimental diets:

- CTR maize and soybean meal-based
- ❖ CHL 20% *Chlorella vulgaris* incorporation
- ❖ CHLEnz 20% *Chlorella vulgaris* incorporation + 0.30% pancreatine enzyme
- ❖ CHLExt 20% extruded *Chlorella vulgaris* incorporation






Slaughter electrocution + exsanguination

### Live animal trial

120 one-day-old Ross 308 male chicks were distributed across four experimental diets:

- CTR maize and soybean meal-based
- ❖ CHL 20% *Chlorella vulgaris* incorporation
- ❖ CHLEnz 20% *Chlorella vulgaris* incorporation + 0.30% pancreatine enzyme
- ❖ CHLExt 20% extruded *Chlorella vulgaris* incorporation



#### Weekly data:

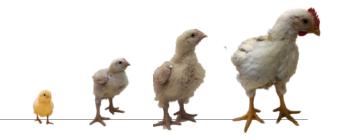
- Live Weight
- Feed intake
- Weight gain
- Feed conversion ratio
- Beak condition
- Excreta quality

#### After slaughter:

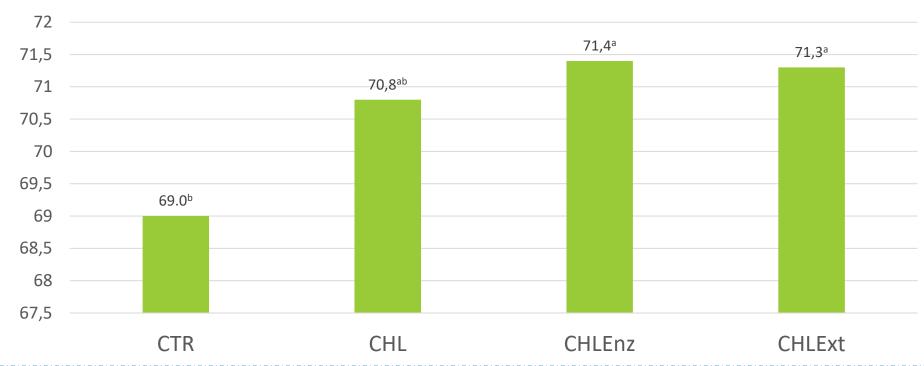
- Organ measures
- Digesta samples
- Carcass yield
- Samples collection

## Effect on Performance




| <b>Experimental Period</b> | CTR               | CHL               | CHLEnz             | CHLExt            | P-value |
|----------------------------|-------------------|-------------------|--------------------|-------------------|---------|
| Initial Weight (g)         | 162               | 162               | 162                | 162               | 0.9999  |
| Final Weight (kg)          | 1485ª             | 1254 <sup>b</sup> | 1361 <sup>ab</sup> | 1258 <sup>b</sup> | <.0001  |
| Daily ingestion/EU (g)     | 229ª              | 188 <sup>c</sup>  | 207 <sup>b</sup>   | 200 <sup>bc</sup> | <.0001  |
| ADG/animal (g)             | 47.3 <sup>a</sup> | 39.0 <sup>b</sup> | 42.8 <sup>b</sup>  | 39.1 <sup>b</sup> | <.0001  |
| Feed Conversion Ratio      | 1.62 <sup>b</sup> | 1.61 <sup>b</sup> | 1.61 <sup>b</sup>  | 1.71 <sup>a</sup> | <.0001  |

ADG - Average Daily Gain


EU – Experimental Unit

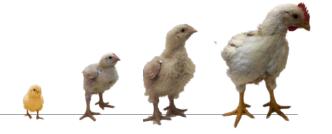
a, b, c – averages in the same variable with distinct letters are significantly different (P < 0.05)

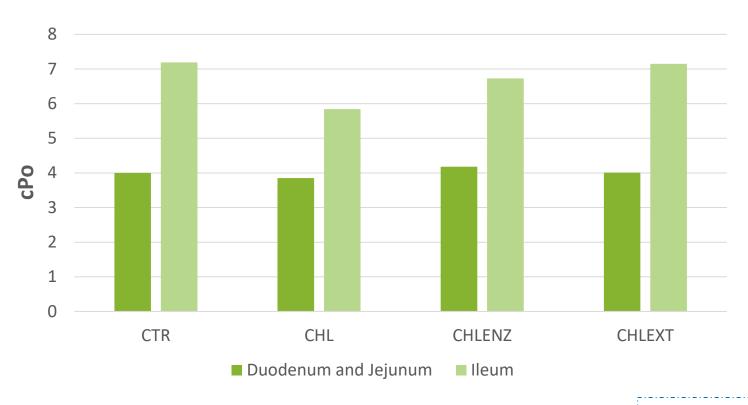
## Effect on Performance





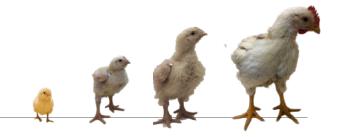



a, b – averages in the same variable with distinct letters are significantly different (P < 0.05)


## Effect on Performance

|                                                | CTR               | CHL                | CHLENZ             | CHLEXT             | P-value |  |
|------------------------------------------------|-------------------|--------------------|--------------------|--------------------|---------|--|
| Relative weight of GI tract. g/kg body weight  |                   |                    |                    |                    |         |  |
| Crop                                           | 3.36              | 3.55               | 3.49               | 3.48               | 0.9609  |  |
| Proventriculus                                 | 5.01 <sup>a</sup> | 4.22 <sup>ab</sup> | 4.12 <sup>b</sup>  | 4.82 <sup>ab</sup> | 0.0239  |  |
| Liver                                          | 29.0ª             | 23.8 <sup>ab</sup> | 22.1 <sup>b</sup>  | 23.3 <sup>b</sup>  | 0.0111  |  |
| Duodenum                                       | 6.37              | 5.84               | 6.06               | 6.11               | 0.4273  |  |
| Jejunum                                        | 11.8ª             | 10.0 <sup>ab</sup> | 9.78 <sup>b</sup>  | 10.9 <sup>ab</sup> | 0.0368  |  |
| lleum                                          | 10.3              | 9.57               | 9.66               | 9.38               | 0.5283  |  |
| 2 Caecum                                       | 4.84              | 5.15               | 4.87               | 5.08               | 0.7310  |  |
| Relative length of GI tract. cm/kg body weight |                   |                    |                    |                    |         |  |
| Duodenum                                       | 19.0 <sup>b</sup> | 22.0 <sup>a</sup>  | 20.3 <sup>ab</sup> | 21.8 <sup>a</sup>  | 0.0173  |  |
| Jejunum                                        | 48.8 <sup>b</sup> | 56.1ª              | 50.4 <sup>b</sup>  | 51.1 <sup>a</sup>  | 0.0003  |  |
| lleum                                          | 48.8 <sup>b</sup> | 62.1 <sup>a</sup>  | 57.2 <sup>a</sup>  | 56.0ª              | 0.0001  |  |
| Left Caecum                                    | 11.4 <sup>b</sup> | 13.5ª              | 13.0 <sup>ab</sup> | 13.1 <sup>ab</sup> | 0.0414  |  |

a, b – averages in the same variable with distinct letters are significantly different (P < 0.05)


## Effect on Digesta Viscosity

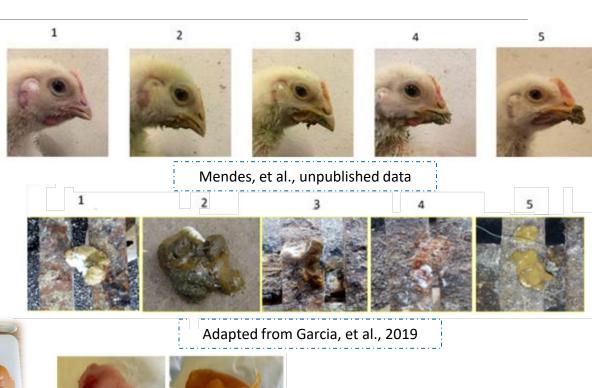




No significant differences (P < 0.05)

### Conclusions




- ❖ Feed intake and average daily gain decreased across all *C. vulgaris* diets compared to the CTR.
- CVEnz and CVExt diets improved carcass yield relative to CTR.
- **CVEnz** yielded body weights and feed conversion ratios comparable to **CTR**, maintaining growth performance despite high *C. vulgaris* inclusion.
- ❖ Digesta viscosity was not significantly affected by diet, indicating no negative impact on gut health.

## In the future...

- 1. Analyse beak condition and excreta quality
- 2. Determine meat quality effects
- 3. Proteomic analysis
- 4. Evaluate health parameters







## Thank you for your attention!















Fundação para a Ciência e a Tecnologia





**Rita Mendes** 

FCT Scholarship: 2022.11690.BD