

# Rumen contents from slaughtered cattle and sheep to study *in vitro* degradation of selected feeds



By

Abdul Shakoor Chaudhry

School of Natural & Environmental Sciences, Newcastle University, UK

abdul.chaudhry@ncl.ac.uk











#### The Problem?





- Rumen degradation data sets are needed to formulate nutritionally balanced diets for ruminant animals.
- Live animals are used to obtain rumen degradation profiles of various feed ingredients.
- Either intact or surgically prepared animals are required
- This process is invasive and so it is
  - highly regulated,
  - -laborious,
  - expensive and
  - undesirable.















#### The Solution?

- Rumen fluid (RF) from freshly slaughtered animals can be used as a safe alternative.
- However, the same ruminant species may not always be available at an abattoir.
- This study compared RF from cattle (RFC) and sheep (RFS) as non-invasive alternatives to estimate in vitro degradation of 12 commonly used feed ingredients.









#### **Materials and Methods 1**



- 12 Feeds were collected representing
- Six Concentrates as by-products of:
  - 2 cereals
  - 2 legumes
  - 2 oil seed meals
- Six grasses
  - 2 grass types (ryegrass & mixed with clover)
  - 2 seasons
  - 2 fields
- All samples were dried & ground via a 1 mm sieve







# **Materials and Methods 2**



- Each RFC and RFS was filtered, buffered & gased
- Factorial methods were used for in vitro experiments
- About 0.4g of each feed sample was incubated with 40 ml of either RFC or RFS for 0-72h at 39°C.
- The undegraded residues were washed & dried to estimate degradation of each feed at each time.
- A curve fitting model was used to derive constants and effective degradability (ED) of DM and CP.
- The data were statistically analysed by Minitab.

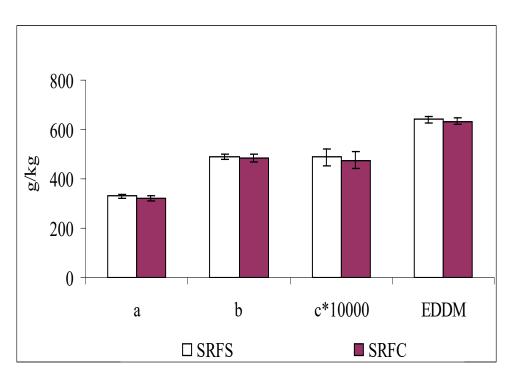


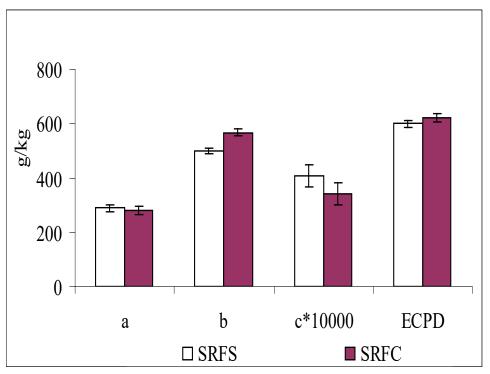
# Results 1 (Degradation Profiles, Concentrates)

|              | SRFS (Sheep)          |                   |                       |                   | SRFC (Cattle)         |                  |        |                   |
|--------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|------------------|--------|-------------------|
| Concentrate  | Degradation constants |                   |                       | DMD               | Degradation constants |                  |        | DMD               |
|              | а                     | b                 | c/hour                | <b>EDMD</b>       | а                     | b                | c/hour | <b>EDMD</b>       |
| Wheat Feed   | 278 <sup>bcd</sup>    | 429 <sup>d</sup>  | 0.123a                | 628 <sup>de</sup> | 262°                  | 449 <sup>b</sup> | 0.094  | 624 <sup>de</sup> |
| Maize G Feed | 290 <sup>abc</sup>    | 595 <sup>ab</sup> | 0.037 <sup>b</sup>    | 675 <sup>cd</sup> | 319 <sup>b</sup>      | 508 <sup>b</sup> | 0.057  | 667 <sup>cd</sup> |
| Micro Peas   | 322 <sup>ab</sup>     | 597 <sup>ab</sup> | $0.09^{\mathrm{ab}}$  | 805ª              | 328 <sup>ab</sup>     | 607ª             | 0.071  | 799a              |
| Micro Beans  | 348ª                  | 547 <sup>bc</sup> | 0.062 <sup>b</sup>    | 758 <sup>ab</sup> | 353a                  | 516 <sup>b</sup> | 0.080  | 752 <sup>ab</sup> |
| Rape S Meal  | 230 <sup>cd</sup>     | 528°              | 0.050 <sup>b</sup>    | 595e              | 226 <sup>d</sup>      | 500 <sup>b</sup> | 0.047  | 573e              |
| Soy B Meal   | 227 <sup>d</sup>      | 612a              | $0.076^{\mathrm{ab}}$ | 705 <sup>bc</sup> | 256°                  | 638a             | 0.047  | 701 <sup>bc</sup> |
| SE SE        | 20.7                  | 18.60             | 0.019                 | 22.66             | 9.85                  | 26.17            | 0.017  | 17.71             |



# Results 2 (Degradation Profiles, Grasses)


|       | SRFS (Sheep)          |       |                    |                   | SRFC (Cattle)     |                    |        |                   |
|-------|-----------------------|-------|--------------------|-------------------|-------------------|--------------------|--------|-------------------|
| Grass | Degradation constants |       |                    | DMD               | Degrac            | DMD                |        |                   |
|       | а                     | b     | c/hour             | EDMD              | а                 | b                  | c/hour | <b>EDMD</b>       |
| F1S1  | 230 <sup>b</sup>      | 497   | 0.029              | 509 <sup>b</sup>  | 223°              | 592 <sup>ab</sup>  | 0.019  | 501 <sup>b</sup>  |
| F1S2  | 248 <sup>b</sup>      | 516   | 0.027 <sup>b</sup> | 532 <sup>ab</sup> | 260 <sup>b</sup>  | 517 <sup>abc</sup> | 0.023  | 530 <sup>ab</sup> |
| F2S1  | 255 <sup>b</sup>      | 569   | 0.024 <sup>b</sup> | 544 <sup>ab</sup> | 249 <sup>bc</sup> | 633a               | 0.018  | 536 <sup>ab</sup> |
| F2S2  | 308a                  | 512   | 0.028 <sup>b</sup> | 577 <sup>ab</sup> | 309a              | 426°               | 0.033  | 567 <sup>ab</sup> |
| F3S1  | 276 <sup>ab</sup>     | 564   | 0.024 <sup>b</sup> | 570 <sup>ab</sup> | 270 <sup>b</sup>  | 475 <sup>bc</sup>  | 0.036  | 560 <sup>ab</sup> |
| F3S2  | 320a                  | 559   | 0.029 <sup>b</sup> | 626a              | 315ª              | 485 <sup>bc</sup>  | 0.037  | 612a              |
| SE    | 15.79                 | 30.49 | 0.008              | 36.43             | 10.06             | 40.92              | 0.007  | 29.35             |

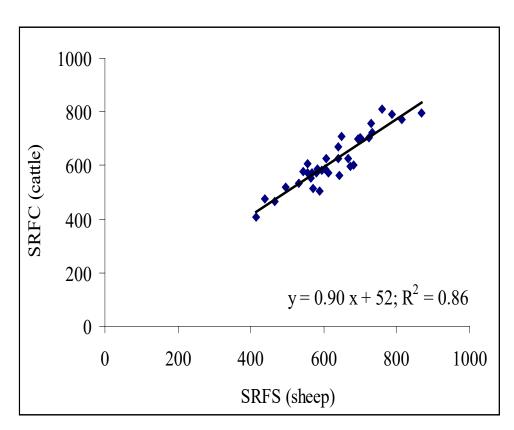


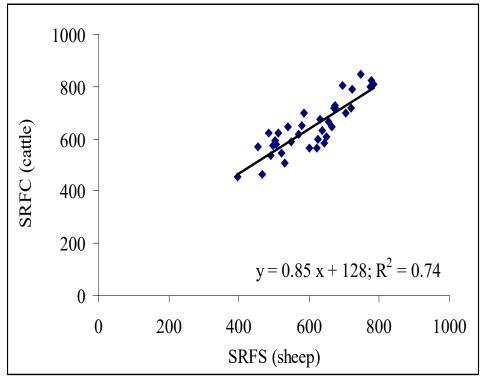

#### **Results 3**

#### Species compared well for

Degradation constants, EDMD and ECPD ( $K=0.02h^{-1}$ )






#### **Results 4**

# Correlations between Sheep vs Cattle were excellent for

EDMD and ECPD  $(K=0.02h^{-1})$ 







### **Summary**

- Degradability differed (P<0.05) with the feed & RF types.</li>
- The feed ranking by degradability estimates was remarkably similar for RFS and RFC.
- Strong correlations were found between RFS and RFC (R<sup>2</sup>=0.86 for EDDM and 0.74 for ECPD).
- The ECPD values using RFS or RFC matched well with the reported literature values of similar feeds.
- The degradability values for RF of slaughtered animals compared well with those for the fistulated animals.





#### **Conclusions**



- RF obtained from freshly slaughtered sheep or cattle could <u>equally</u> be used to estimate degradability of feeds.
- Slaughtered animals can replace fistulated animals as donors of RF for in vitro studies to estimate degradation of ruminant feeds.
- However, access to a reputable abattoir may be restricted in challenging times, e.g. covid 19, H&S.
- Thus, good coordination with an abattoir is required to ensure the availability of RF from similar animals.







# Thanks for your attention

• Any Questions?





