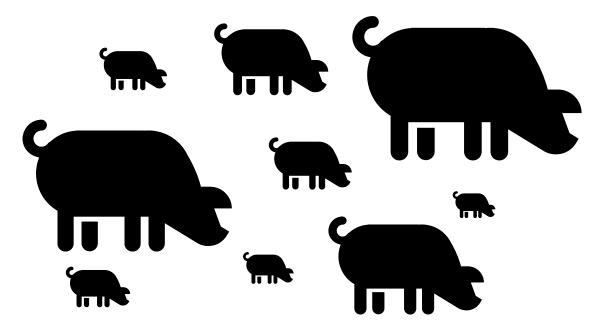
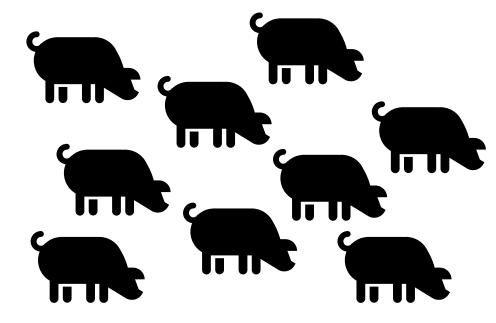


The secret of each sow: exploring the impact of sow and litter features on within-litter uniformity

Katrijn Hooyberghs, S. Goethals, W. Gorssen, L. Chapard, R. Meyermans, N. Aerts, S. Millet, S. Janssens and N. Buys *Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium*

Session 8: "Innovative approaches to pig and poultry production"

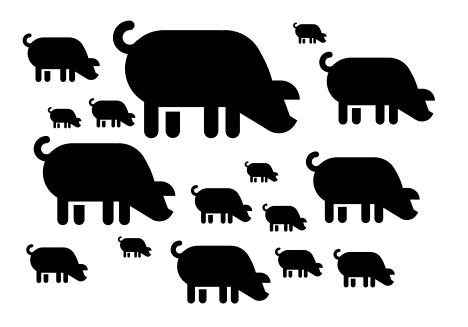




What is body weight uniformity?

Low uniformity in body weight

High uniformity in body weight



Uniformity of body weight = degree of **similarity in weights** of individual pigs within a group

Small piglets causing big challenges

Non-uniform litter

- ↑ the proportion of lightweight piglets
- ↑ risk of encountering challenges shortly after birth
- ↓ pre-weaning survival
- ↓ daily gain and less desirable carcass composition

Objectives

1. Investigate common **metrics** for quantifying the within-litter uniformity in pigs

2. Explore the associations between **sow- and litter-related factors**

and the different metrics of uniformity

Data collection

Quality control:

	Farm 1	Farm 2
NBA	14,307	11,716
Litters	958	732

Difference between the reported number of piglets born alive (NBA) and the number of liveborn piglets weighed at birth

Litters with only 1 piglet

Litters of sows with only 1 litter in the dataset

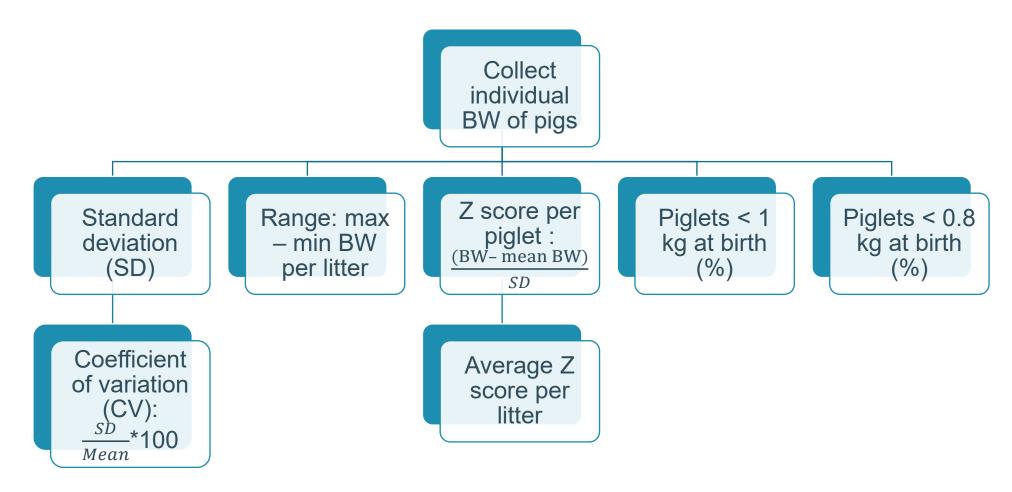
Litters of boars with only 1 litter in the dataset

	Farm 1	Farm 2
Period of data collection	December 2020 to January 2024	January 2021 to February 2024
NBA	811	10,763
Litters	65	667
Piétrain boars line A	14	34
Piétrain boars line B		8
Crossbred sows line 1	29	
Crossbred sows line 2a		9
Crossbred sows line 2b		152

Data collection

- Age at first insemination
- Sow and boar id + their genetic line
- Sow's parity
- Insemination, farrowing and weaning dates
- Gestation and lactation length
- Weaning-to-pregnancy interval
- Number of liveborn, mummified and stillborn piglets, number of males/females
- Individual birth weights of liveborn piglets

Overview collected data


Trait	Total n	Average	SD	Min - Max
Number of piglets born per litter	12,646	17.3	3.9	3 - 27
Number of piglets born alive per litter	11,574	15.8	3.6	2 - 27
Birth weight (kg)	11,574	1.46	0.36	0.40 - 2.78
Coefficient of variation of BW (per litter, %)	732	20.2	6.1	4.4 - 38.7
Parity	732	4.3	2.5	1 - 13
Gestation length (d)	732	116.0	1.4	112 - 120
Lactation length (d)	732	26.5	1.7	20 - 32
Age at first insemination (d)	190	275.0	30.0	223 - 365
Percentage of males per litter (%)	5,975	51.4	13.1	0.0 - 100.0
Percentage of mummies per litter (%)	555	3.8	6.4	0.0 - 75.0
Percentage of stillborn piglets per litter (%)	1072	7.5	10.2	0.0 - 77.8
Average Z score per litter	732	0.07	0.61	-1.41 - 2.64
Within-litter range	732	1.0	0.29	0.14 - 1.74
Percentage of piglets < 0.8 kg per litter (%)	462	3.6	5.7	0.0 - 37.5
Percentage of piglets < 1 kg per litter (%)	1,241	9.8	10.4	0.0 - 55.6

1. Quantifying within-litter uniformity of birth weight: compare six common metrics

How is uniformity measured?

1. Quantifying within-litter uniformity in birth weight:

Pearson correlations between metrics

	CV	SD	Average Z	Range	Piglets < 0.8 kg (%)	
SD	0.88					
Average Z	-0.59	-0.18				
Range	0.81	0.91	-0.20			
Piglets < 0.8 kg (%)	0.68	0.43	-0.56	0.39		
Piglets < 1 kg (%)	0.70	0.38	-0.75	0.33	0.73	

Some degree of interchangeability among CV, SD and Range for assessing within-litter uniformity in birth weight.

The piglets in litters with more variation in birth weight have BW below the population mean compared to more uniform litters.

Evaluating within-litter uniformity at birth may be feasible by only calculating the percentage of lightweight pigs.

2. Research the **associations** between sowand litter-related factors and the different uniformity measures

2. Associations between sow- and litter-related factors and within-litter uniformity

Mixed-effect model per metric

farm: fixed effect

sow and boar: random effects

- Intraclass Correlation Coefficient of the sow and boar effects
 - = variance of random sow or boar effect total variance
 - → How much variance is explained by differences between individual sows or boars

2. Estimates of related factors and within-litter uniformity

	CV (%)	SD	Average Z	Range	Piglets < 0.8 kg (%)	Piglets < 1 kg (%)
Sow/litter factors	Estimates	Estimates	Estimates	Estimates	Estimates	Estimates
Parity 2	-0.99	0.02	0.54	0.08	-1.65	-5.13
Parity 3	-0.77	0.02	0.57	0.09	-1.89	-4.84
Parity 4	0.14	0.03	0.50	0.13	-1.80	-4.56
Parity 5	0.39	0.03	0.48	0.14	-1.37	-3.40
Parity 6 - 7	0.66	0.04	0.40	0.14	-2.22	-3.88
Parity > 7	1.53	0.04	0.31	0.14	-1.31	-2.41
NBA	0.84	0.01	-0.11	0.03	0.46	1.19
Percentage of mummies	0.07		-0.01			0.12
Percentage of stillborn	0.12	0.0007	-0.02	0.002	0.11	0.18
Age at first insemination		0.0002		0.0006		
Gestation length			0.04			
Farm 2	1.52	0.03	0.04	0.11	2.00	2.32
ICC sow	0.14	0.09	0.63	0.08	0.25	0.35
ICC boar	0.02	0.02	0.009	0.008	0.02	0.004
Marginal R ²	0.292	0.155	0.452	0.262	0.120	0.201
Conditional R ²	0.405	0.244	0.800	0.331	0.362	0.485

Conclusion

CV, SD and Range show strong correlations

More feasible method to estimate within-litter uniformity at birth: recording the number of lightweight piglets

Individual sow traits play a crucial role in within-litter uniformity at birth

Acknowledgements

VLAIO for funding the UNIPIG project

The staff of ILVO Pig Complex and UGent-ILVO Pig Campus for their animal caretaking and data collection

Thank you for your attention

