

Genomic insights into Milk Coagulation Properties and Curd Firmness in Pag Island Sheep: a Genome-Wide Association Study

Fabijan Oštarić, *Maja Ferenčaković*, Luboš Vostry, Nicolò Amalfitano, Giovanni Bittante, Ivana Držaić, Vlatka Čubrić Čurik, Vladimir Brajković, Ino Čurik, Nataša Mikulec

TABLE OF CONTENTS

1

2

3

4

INTRODUCTION

Few words
about Pag
Island sheep,
and Milk
coagulation
properties...and
Curd firmness
too...

METHODOLOGY

What gave me a headache these days...

RESULTS

Some interesting and promising stuff!

CONCLUSIONS

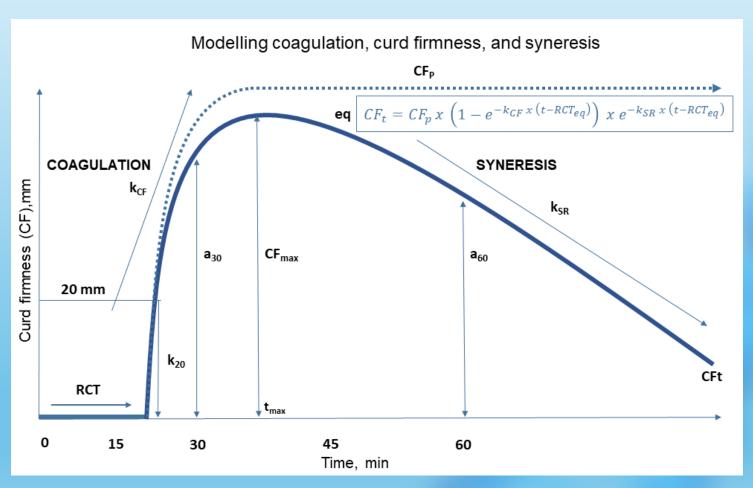
There is so much more investigate and to discover! Fun time ahead!

PAG ISLAND SHEEP

Source: https://www.hrvaska.net/hr/destinacije/otok_pag_hr.htm

PAG ISLAND SHEEP

- From improved indigenous island
 Pramenka breed (rams of the Negretti,
 Bergamo and Gentile di Puglia).
- Before wool production, last decades primarily milk production
- Famous, full-fat, hard sheep cheese Pag Cheese.
- Secondary lamb production small carcass weight and high-quality meat, highly sought after in Croatian market.
- Salt in the soil, affect the structure and quality of the vegetation - reflects on the quality of the milk and meat.
- Milk lactation 160 days, 150kg per lactation, 7% milk fat, 6% milk protein



MILK COAGULATION PROPERTIES (MCP)

- expressed through:
 - time from rennet addition to the beginning of coagulation (RCT, min)
 - time needed for the curd to obtain firmness (CF, mm) of 20 mm (k_{20} , min)
 - curd firmness at the end of the analysis (a₃₀, mm).
- Traditional milk coagulation properties analysis is limited by:
 - slow-coagulating (SC) or non-coagulating (NC) samples
 - k₂₀ can't be estimated in samples with high RCT value
 - dependence of a₃₀ parameter on RCT value

COAGULATION, CURD FIRMNESS (CF), AND SYNERESIS MODELING

Bittante et al. 2013.

- CF_t curd firmness at time t (mm)
- RCT rennet coagulation time (min)
- k_{20} time when curd =20mm (min)
- a₃₀ CF at 30 min after rennet addition (mm)
- a₆₀ CF at 60 min after rennet addition (mm)
- t_{max} time at a_{max} (min)
- RCT_{eq} rennet coagulation time from model (min)
- k_{CF} curd firming rate constant (%/min)
- k_{SR} syneresis rate constant (%/min)
- CF_P potential asymptotic CF in absence of syneresis (mm)
- CF_{max} max CF_t (mm)

WHY DO WE CARE?

- Selection program based on milk composition and yield (MY) not optimal!
- MCP should be among the most important selection criteria.
- A better understanding of MCP in Pag sheep milk.
- Identification of genetic polymorphisms affecting MCP.
- Improving cheese-making ability, cheese yield, selection programs, and thorough characterization of milk from Mediterranean sheep breeds.

MILK SAMPLING AND HANDLING

- 2 farms with total of 370 sheep in lactation
- AT sampling method (ICAR, 2018)
- 5 samples per sheep in lactation
- 20 mL immediately preserved with Naazidiol for somatic cell count and total bacterial count
- 60 mL non-preserved for analysis of the chemical composition, physical parameters, and coagulation properties.

MILK SAMPLING AND HANDLING

- shock-frozen to -30°C in 15 minutes and stored at -20°C for MCP determination.
- Fossomatic Minor (Foss Electric, Hileroed, Denmark).
- Bactoscan FC (Foss Electric, Hileroed, Denmark).
- Milkoscan FT3 (Foss Electric, Hileroed, Denmark)
- Lactodinamograph or Formagraph (MA.PE SYSTEM SRL, Firenze, Italy)
- Rennet used Bioren Premium PHA100 (Christian Hansen, Sweden) with declared strength 791 IMCU/gr

DNA SAMPLING AND ANALYSIS

- □ Farm O
 - □ N=135 (7 M , 128 F)
- Farma P
 - □ N =232 (14 M, 218 F)
- Milk and tissue (Tissue Sample Unit Applicator, Allflex)
- Dneasy Blood & Tissue Kit (Qiagen, Germany)
- GeneSeek® Genomic Profiler™ Ovine 50k (Neogen, GB)

- Removed SNPs
 - GenTrain Score = 0,6
 - □ GenCall Score = 0,7
 - X and not mapped
 - Missing per SNP < 0,9
 - MAF 0,01
 - □ 51867 → 32885 SNPs
- Removed animals
 - Missing SNPs > 10%
 - When discrepant with pedigree
 - □ 325 → 291 sheep (F)
- SAS 9.4, PLINK 1.9, JMP 17 PRO

STATISTICS AND GWAS

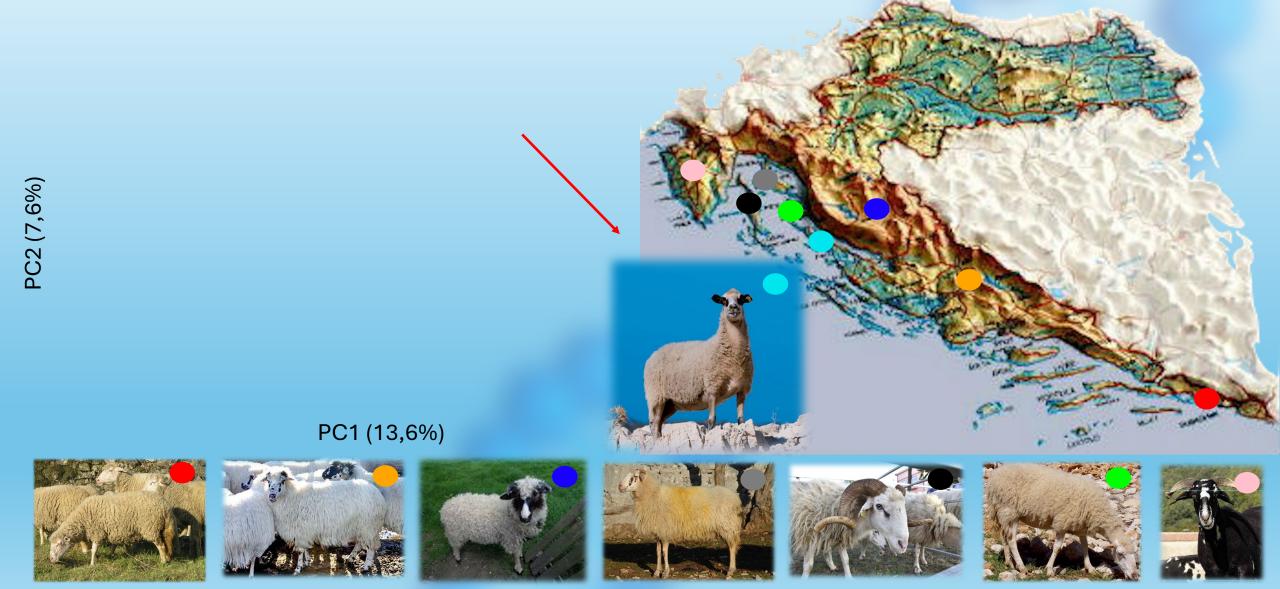
- SAS 9.4, R and JMP 17 PRO
 - Data cleaning and visualisation
 - □ 1476 samples → 1173
 - Model building with BESTSUBSET option

- BLUPF90 family of programs
 - □ renumf90
 - blupf90+ REML estimating genetic parameters
 - blupf90+ predict genomic BW
 - □ postGSf90 ssGWAS

PEDIGREE → 820 records, 3 gen

- Tested dependent variables (all continuous)
 - \square RCT, k_{20} , A_{30} , A_{60} , RCT_{eq}, k_{CF} , k_{SR} , CF_P, CF_{max}, t_{max}
- Independent variables
 - FARM farms O and P
 - □ DAYTIME AM or PM
 - **DAYS IN MILK**
 - AGE (in years)

- QTL Regions and Gene Annotation
 - □ GALLO R package
 - Genome assembly Oar_v4.0
 - AnimalQTLdb (Sheep)
 - \Box QTL enrichment p = 0.05 (FDR)

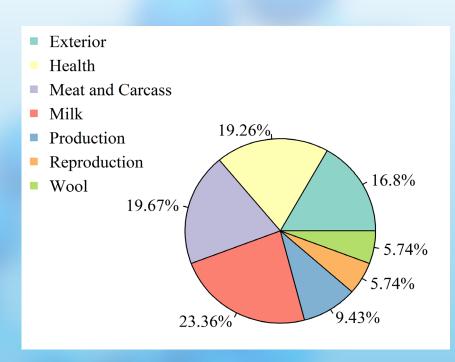

SOME MILK RESULTS (STATS)...

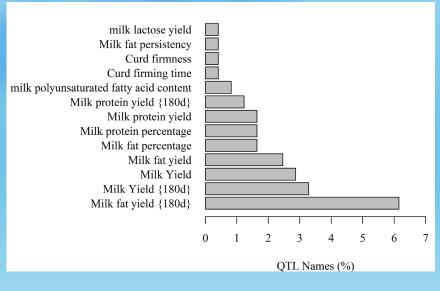
Trait	Mean	Std Dev	Min	Max
DIM (days)	100,25	43,92	12,00	202,00
AGE (years)	4,63	2,06	2,00	14,00
RCT (min)	14,84	8,75	5,00	60,00
k ₂₀ (min)	1,38	1,01	0,00	8,87
a ₃₀ (mm)	40,97	13,90	0,00	66,64
a ₆₀ (mm)	32,50	13,95	0,00	66,15
a _{max} (mm)	52,47	9,81	0,00	67,62
t _{max} (min)	24,72	10,57	0,00	60,00
RCT _{eq} (min)	14,08	8,84	3,94	60,00
k _{CF} (%/min)	0,34	0,18	0,00	1,30
k _{sr} (%/min)	0,02	0,01	0,00	0,08
CF _P (mm)	62,50	24,87	0,00	367,91
Cf _{max} (mm)	48,22	8,99	0,00	63,78

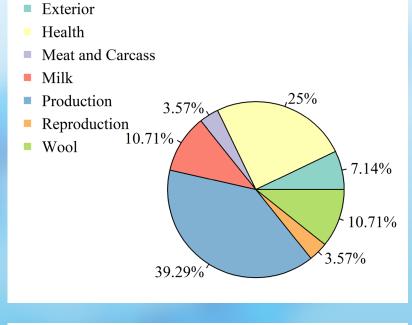
measured

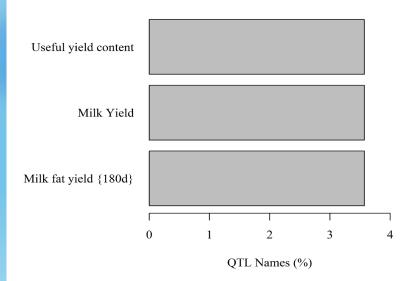
estimated

PCA with neighbors (sheep from close islands, regions...)

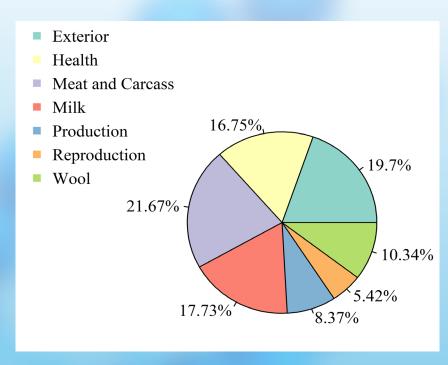


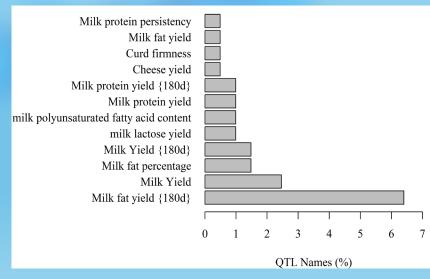

RCT – Beginning of coagulation


1
 50 significant SNPs (17 negative effect)


- □ 4% V_G explained
- □ 45 region → 542 genes → 244 QTLs (57 for milk)

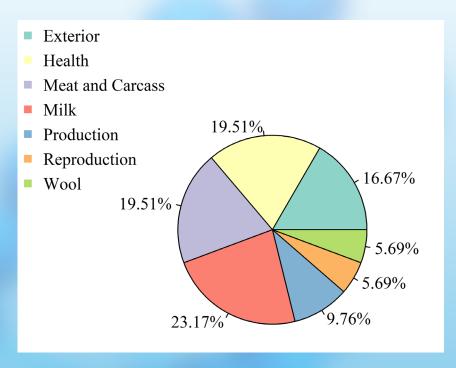
a_{max} – maximum CF during analysis

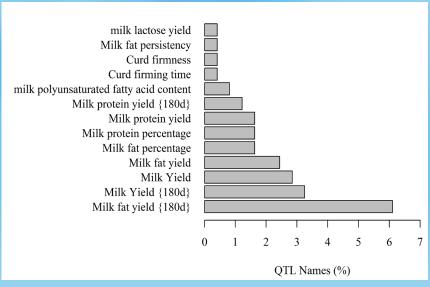




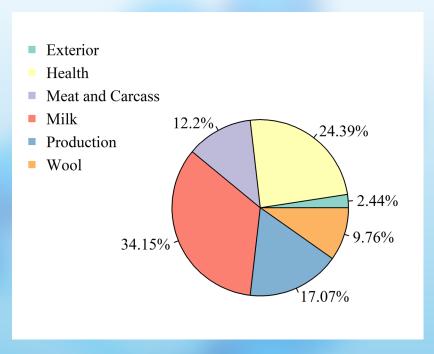
- 9 significant SNPs (7 negative effect)
- □ ≈ 1% V_G explained
- \neg 7 region \rightarrow 74 genes \rightarrow 28 QTLs (3 for milk)

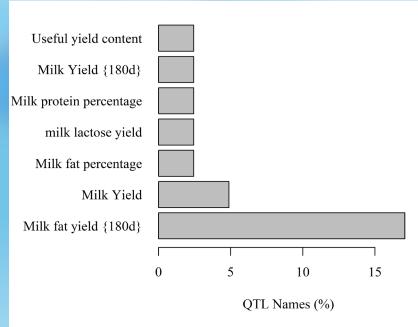
- 37 significant SNPs (12 negative effect)
- □ 3% V_G explained
- □ 31 region → 396 genes → 203 QTLs (36 for milk)

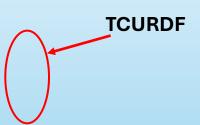




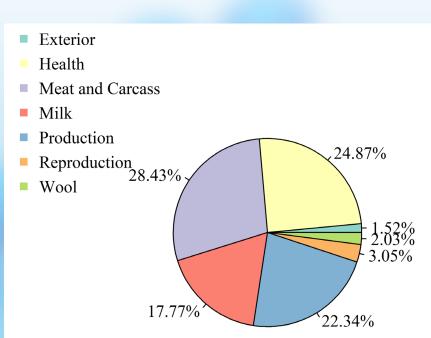
RCT_{eq} – Beginning of coagulation estimated

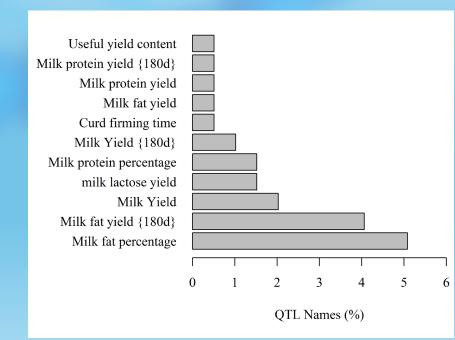

- 52 significant SNPs (17 negative effect)
- □ 4% V_G explained
- □ 47 region → 555 genes → 246 QTLs (57 for milk)



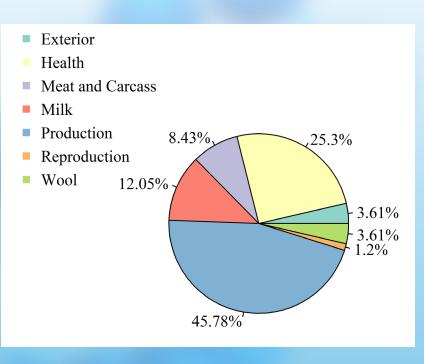

k_{CF} – constant curd firming rate estimated

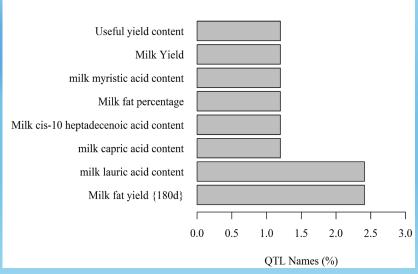
- 14 significant SNPs (9 negative effect)
- □ ≈ 1% V_G explained
- □ 11 region → 146 genes → 41 QTLs (14 for milk)

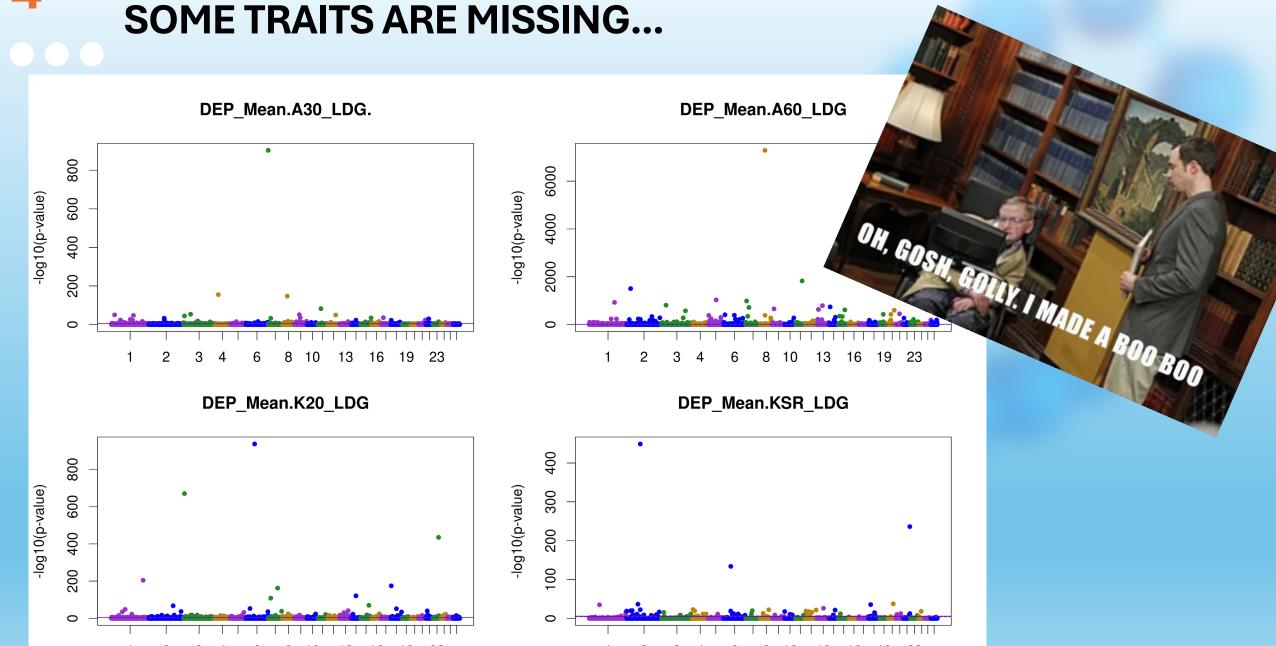




CF_p – potential asymptotical CF at infinite time - estimated


- 39 significant SNPs (17 negative effect)
- □ 7% V_G explained
- □ 28 region → 283 genes → 197 QTLs (35 for milk)





CF_{max} – Maximum curd firmness estimated

- 15 significant SNPs (10 negative effect)
- $□ \approx 1\% V_G$ explained
- □ 11 region → 153 genes → 83 QTLs (10 for milk)

WE THANK TO:

Farm Oštarić and Farm Pernjak

HAPIH (Marija Špehar, PhD)

Mario Shihabi, PhD

FUNDING:

• "Potential of microencapsulation in cheese production" (KK.01.1.1.04.0058), Operational Programme Competitiveness and Cohesion 2014–2020

 "Pheno-Geno-IP-2022-10-6914" funded by Croatian Science Foundation

