

La responsabilité du ministère en charge de l'agriculture ne saurait être engagée

Estimation of genetic parameters for fertility and prolificacy in the Lacaune meat sheep population carrying a hyperprolific gene

Cobo Emilie, Bodin Loys (INRAE, France) Raoul Jérôme (Idele, France)

Context

PRODUCTIVITY

= Main objective to maintain production potential and economic security in the French sheep industry

PROLIFICACY

= Number of lambs born/number of lambings

Easy to measure

Well known genetic parameters

Induced Œstrus (+ artificial insemination) \rightarrow h² = 0.08 Natural Œstrus (+ natural mating) \rightarrow h² = 0.10

Context

PRODUCTIVITY

= Main objective to maintain production potential and economic security in the French sheep industry

PROLIFICACY

= Number of lambs born/number of lambings

Easy to measure

Well known genetic parameters

Induced Œstrus (+ artificial insemination) \rightarrow h² = 0.08 Natural Œstrus (+ natural mating) \rightarrow h² = 0.10

FERTILITY

= Number of ewes lambing/number of ewes joined

Complex trait

Large number of variation factors

Practices in natural mating rarely recorded

milie Cobo

Objective

Meat sheep Lacaune population of Ovi-Test breeding program

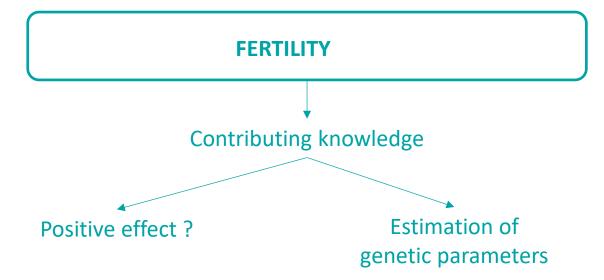
Presence of major gene for ovulation: FecL

PROLIFICACY

Known impacts:

Average increase

Appearance of exceptional litter sizes


Objective

Meat sheep Lacaune population of Ovi-Test breeding program

Presence of major gene for ovulation: FecL

Roulficacy Known impacts: Average increase Appearance of exceptional litter sizes

National Official Genetic Database

20,770 ewes 2010

26 flocks

68,652 matings

49,248 lambings

2020

2 types of œstrus:

- Induced œstrus followed by artificial insemination: 40.896 matings
- First return to œstrus: 8.352 matings

National Official Genetic Database

2010 20,770 ewes

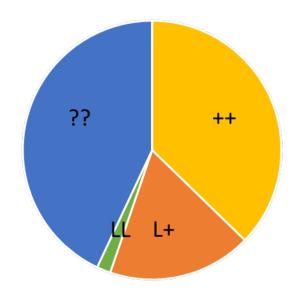
26 flocks

68,652 matings

49,248 lambings

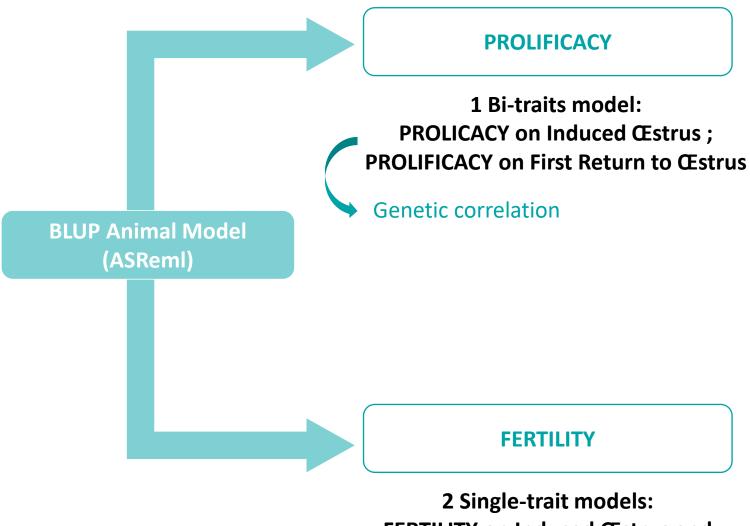
2020

2 types of œstrus:

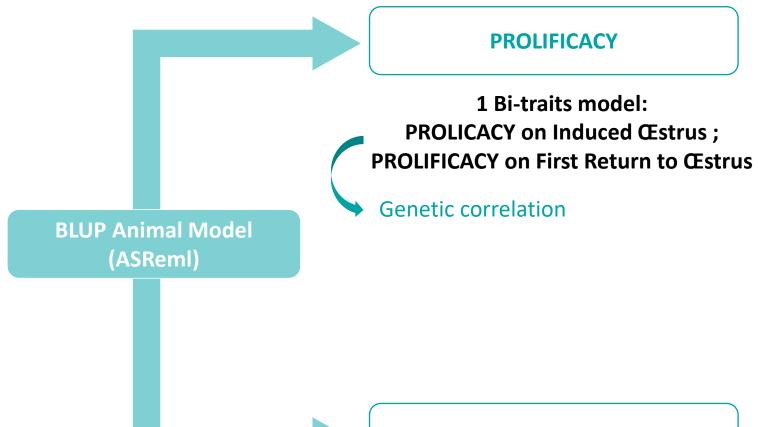

- Induced œstrus followed by artificial insemination: 40.896 matings
- First return to œstrus: 8.352 matings

4 genotypes:

- Unknow ?? 43%
- Wild ++ 37%
- Heterozygous L+ 18%
- Homozygous LL 2%


5-generation pedigree:

90% of ewes with a known sire


PROLIFICACY & FERTILITY

INRA© Emilie Cobo

EAAP, 1st September 2024, Session12

FERTILITY on Induced Œstrus and FERTILITY on First Return to Œstrus

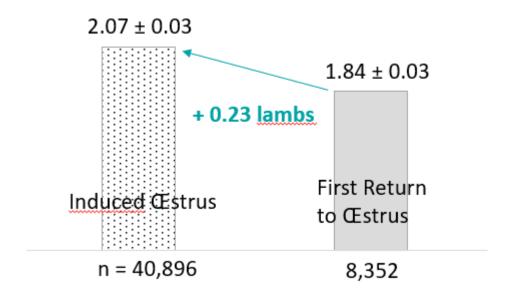
FERTILITY

2 Single-trait models: FERTILITY on Induced Œstrus and FERTILITY on First Return to Œstrus

6 fixed effects:

- Genotype (4 levels)
- Previous litter size (3 levels)
- Previous lambing number (4 levels)
- Post-partum interval (4 levels)
- Month of mating (3 levels)
- Age of female at mating (3 levels)

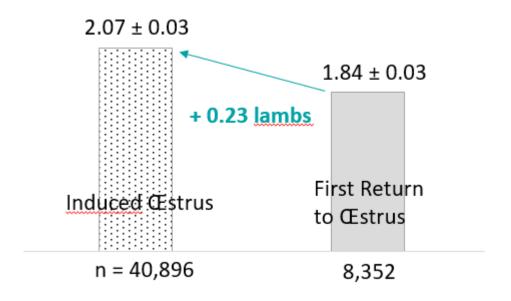
1 animal effect

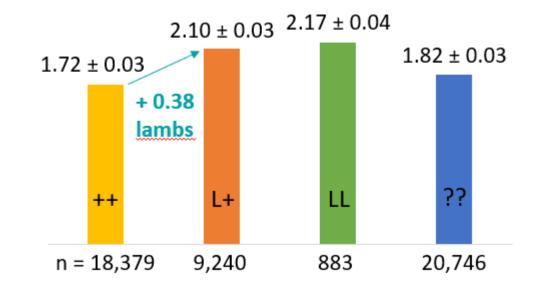

3 random effects:

- Animal permanent environment
- Herd-year-season
- Residual

LSMeans and S.E. of prolificacy (1 bi-traits model)

Per type of œstrus





LSMeans and S.E. of prolificacy (1 bi-traits model)

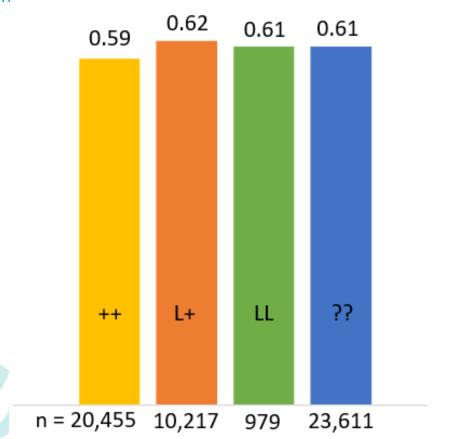
Per type of œstrus

Per genotype (P < 0.0001)

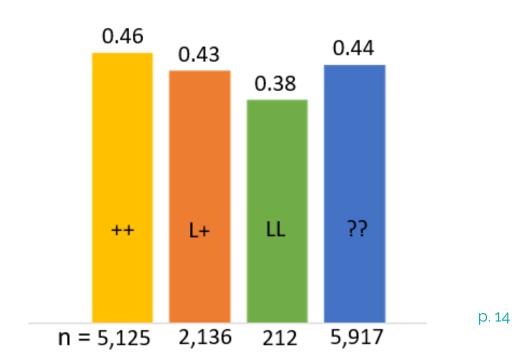
Genetic parameters of prolificacies on induced œstrus and first return to œstrus

Bi-traits model	Induced Œstrus	First Return to Œstrus
Additive Genetic Variance σ_a^2	0.046 (0.005)	0.043 (0.008)
Animal Permanent Environment Variance $\sigma^2_{\ pe}$	0.020 (0.005)	0.040 (0.012)
Residual Variance σ ² _e	0.643 (0.006)	0.419 (0.012)

Genetic parameters of prolificacies on induced œstrus and first return to œstrus


Bi-traits model	Induced Œstrus	First Return to Œstrus
Additive Genetic Variance σ_a^2	0.046 (0.005)	0.043 (0.008)
Animal Permanent Environment Variance $\sigma^2_{\ pe}$	0.020 (0.005)	0.040 (0.012)
Residual Variance σ ² _e	0.643 (0.006)	0.419 (0.012)
Repeatability r	0.09 (0.01)	0.16 (0.02)
Heritability h ²	0.06 (0.01)	0.09 (0.01)
Genetic Correlation rg	0.95 (0.05)	

LSMeans of fertility per genotype for each type of œstrus (2 independant models)



P_{Genotype} < 0.001

First return to œstrus

P_{Genotype} = 0.005

Genetic parameters of fertility on induced œstrus and first return to œstrus

One trait model	Induced Œstrus	First Return to Œstrus
Additive Genetic Variance $\sigma^2_{\ a}$	0.007 (0.001)	0.007 (0.002)
Animal Permanent Environment Variance $\sigma^2_{\ pe}$	0.012 (0.001)	0.009 (0.003)
Residual Variance σ ² _e	0.161 (0.001)	0.188 (0.004)

Genetic parameters of fertility on induced œstrus and first return to œstrus

One trait model	Induced Œstrus	First Return to Œstrus
Additive Genetic Variance $\sigma^2_{\ a}$	0.007 (0.001)	0.007 (0.002)
Animal Permanent Environment Variance $\sigma^2_{\ pe}$	0.012 (0.001)	0.009 (0.003)
Residual Variance σ ² _e	0.161 (0.001)	0.188 (0.004)
Repeatability r	0.10 (0.01)	0.08 (0.01)
Heritability h ²	0.04 (0.01)	0.03 (0.01)

> Conclusion

> PROLIFICACY:

- Expected effect of the gene FecL on prolificacy
- Estimation of genetic parameters for prolificacy close to those known for this breed

Conclusion

> PROLIFICACY:

- Expected effect of the gene FecL on prolificacy
- Estimation of genetic parameters for prolificacy close to those known for this breed

> FERTILITY:

- Non-zero but low heritabilities whatever the type of œstrus
 - → trait difficult to improve through genetic selection
- Positive effect of the gene on fertility not confirmed by the study

Conclusion

> PROLIFICACY:

- Expected effect of the gene FecL on prolificacy
- Estimation of genetic parameters for prolificacy close to those known for this breed

> FERTILITY:

- Non-zero but low heritabilities whatever the type of œstrus
 - → trait difficult to improve through genetic selection
- Positive effect of the gene on fertility not confirmed by the study

> FIRST RETURN TO OESTRUS:

- Collect more and better variation factors
- Bias of the first return to œstrus study: ewes present at the first return to œstrus are necessarily ewes that failed in the previous œstrus

Thank you for listening

