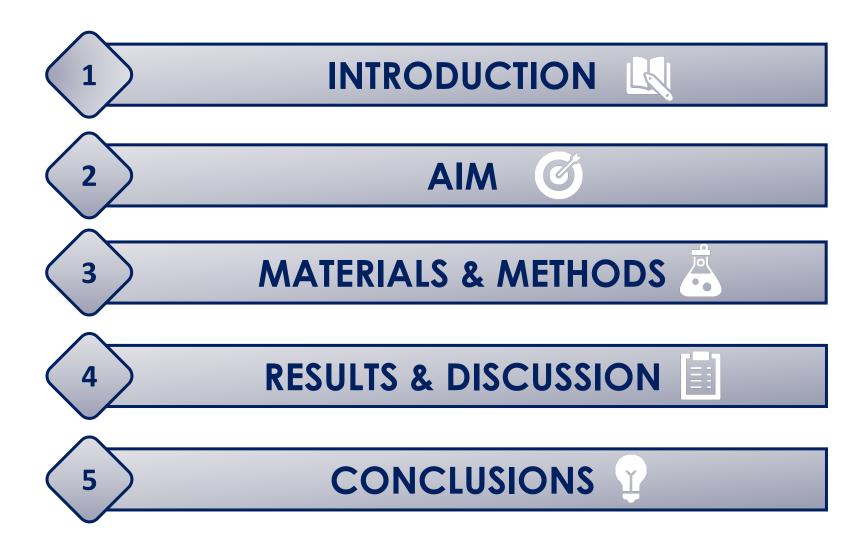
Session 13.

Sensing Physiology: Tools towards optimising livestock husbandry

Room: Modicana – Palazzo Affari 3rd Floor Chair: Ákos / Garcia-Roche

Development of an HPLC method for the quantification of allantoin, creatinine and uric acid in Holstein cows' urine


Elena Visentin, Silvia Magro, Silvia Sabbadin, Giovanni Niero, Massimo De Marchi

Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro (PD), Italy;

75th Annual Meeting of the European Federation of Animal Science, Florence, Italy (1st – 5th September 2024)

OUTLINE

OUTLINE

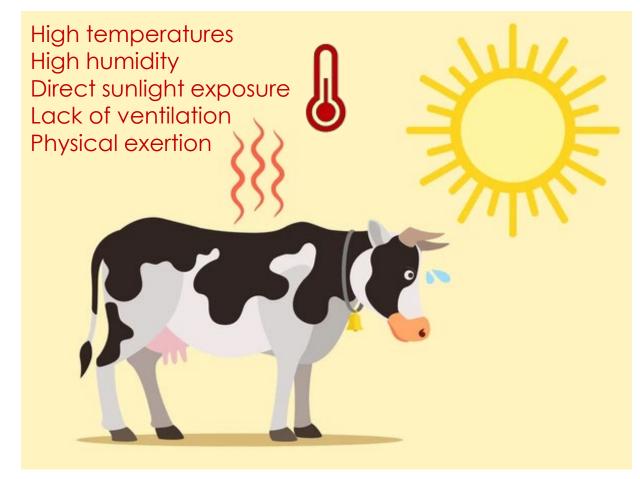
INTRODUCTION **AIM MATERIALS & METHODS RESULTS & DISCUSSION CONCLUSIONS**

03/23

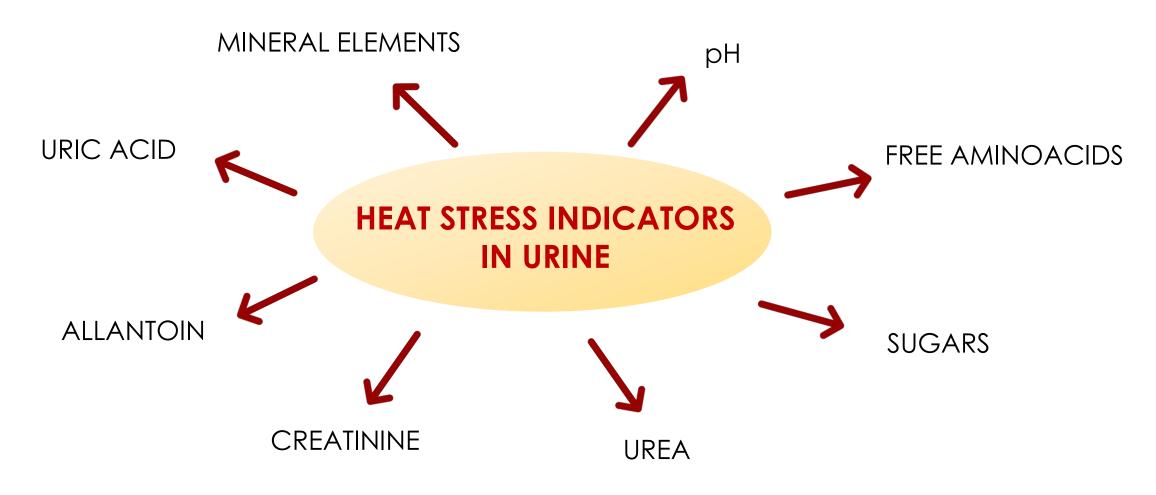
INTRODUCTION

HEAT STRESS

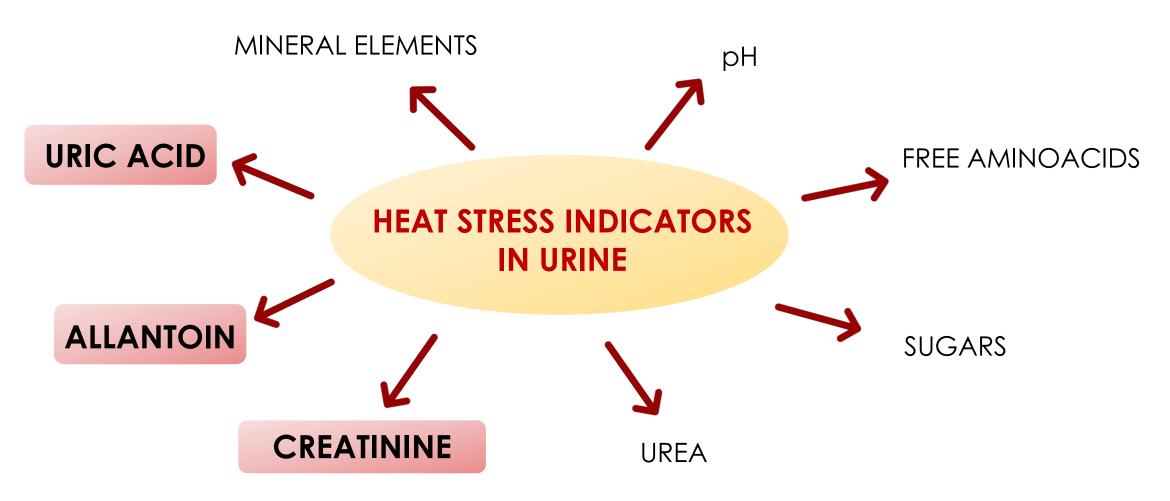
Physiological condition occuring when an animal is unable to effectively dissipate excess body heat.



Respiratory rate and body temperature Incidence of mastitis and ketosis


Milk production

Dehydration and electrolyte imbalances Alteration in milk quality Reproductive problems



INTRODUCTION

INTRODUCTION

OUTLINE

INTRODUCTION AIM MATERIALS & METHODS RESULTS & DISCUSSION CONCLUSIONS

AIM

The aims of the present study were to:

1) Determine allantoin, creatinine and uric acid in urine samples through HPLC method.

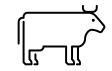
AIM

The aims of the present study were to:

1) Determine allantoin, creatinine and uric acid in urine samples through HPLC method.

2) Assess repeatability, reproducibility and recovery of the HPLC method used to determine urine compounds related to heat stress.

OUTLINE


INTRODUCTION AIM MATERIALS & METHODS RESULTS & DISCUSSION CONCLUSIONS

North of Italy

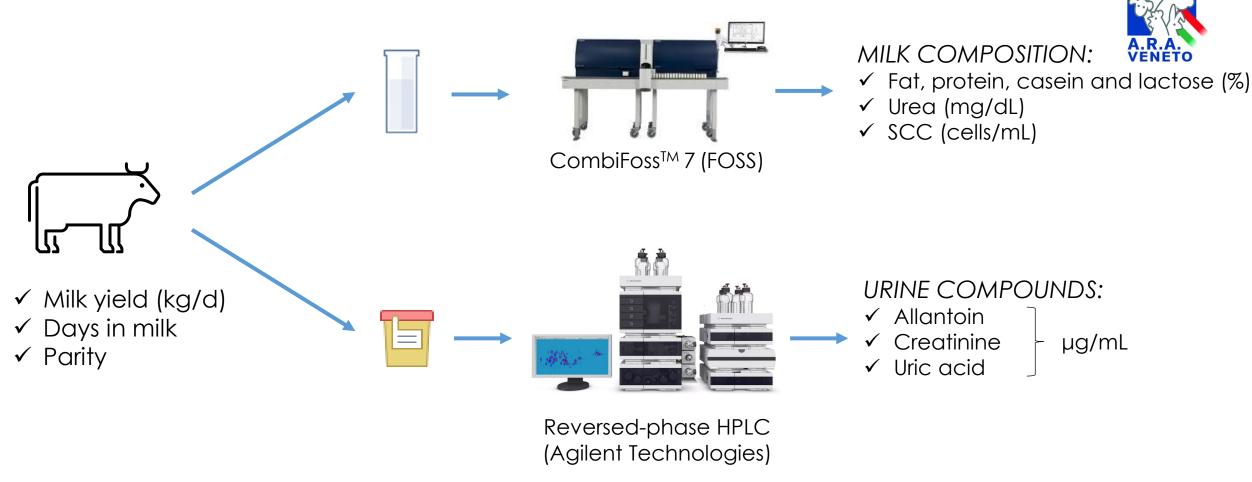
1,275 Holstein Friesian cows الرسالة

21 farms Temperature Humidity Index (THI)

From April to November 2023

Each cow was sampled once

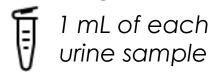
milk



- ✓ Milk yield (kg/d)
- ✓ Days in milk
- ✓ Parity

10/23

Urines preparation before HPLC analysis



Centrifugation step at room temperature

for 15 min at 13,000 g

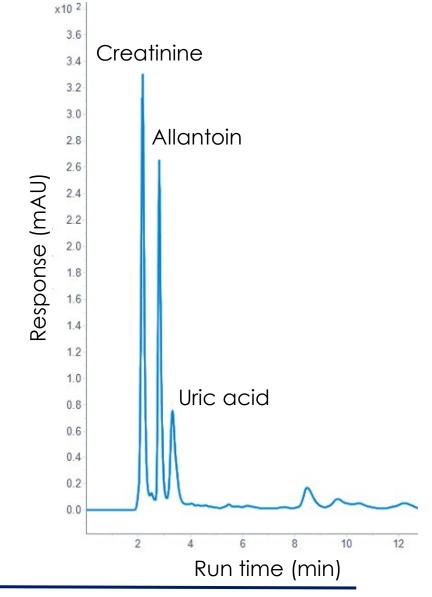
Starting sample

Dilution step

in the proportion 1:10 with ultrapure water

Sample in vial can be analyzed through HPLC analysis

Filtration step using 0.22 µm syringe filter



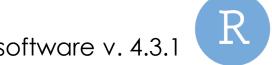
HPLC analysis

- > Instrument: Agilent 1260 Infinity II LC system
- Reverse-phase analytical column C18 preceded by a pre-column
- > Linear gradient elution
- > Mobile phase: 10 mM potassium dihydrogen phosphate solution
- > Flow rate: 1 mL/min
- > Absorbance detection at 220 nm
- Injection volume: 20 μL

Identification and quantification were carried out using external standards at the highest available purity level.

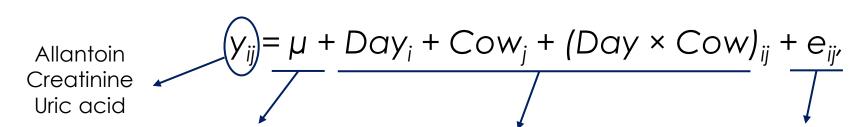
Validation of the HPLC method

- ✓ Individual urine samples from 10 cows analyzed for 5 days
- ✓ Single breed → Holstein Friesian
- ✓ Single experimental farm
- ✓ Average parity = 2.3
- ✓ Average days in milk = 140.3


Validation of the HPLC method

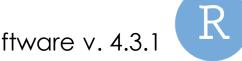
- ✓ Individual urine samples from 10 cows sampled for 5 days
- ✓ Single breed → Holstein Friesian
- ✓ Single experimental farm
- ✓ Average parity = 2.3
- ✓ Average days in milk = 140.3

$$y_{ij} = \mu + Day_i + Cow_j + (Day \times Cow)_{ij} + e_{ij}$$



Validation of the HPLC method

- ✓ Individual urine samples from 10 cows sampled for 5 days
- ✓ Single breed → Holstein Friesian
- ✓ Single experimental farm
- ✓ Average parity = 2.3
- ✓ Average days in milk = 140.3


Overall intercept

Random effects

Random residual term

R software v. 4.3.

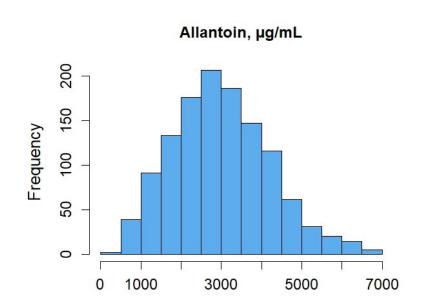
OUTLINE

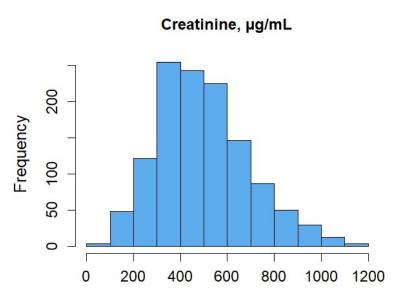
INTRODUCTION AIM MATERIALS & METHODS RESULTS & DISCUSSION CONCLUSIONS

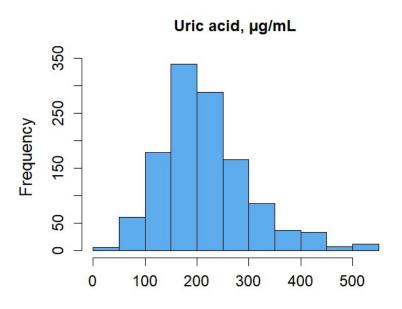
Descriptive statistics¹ of urine traits

Urine trait	Mean	SD	CV, %	Minimun	Maximum
→ Allantoin, µg/mL	3,071.10	1,273.87	41.48	238.20	8,385,30
Creatinine, µg/mL	505.91	209.80	41.47	42.54	1,431.84
Uric acid, µg/mL	225.05	105.27	46.78	23.59	1,071.71

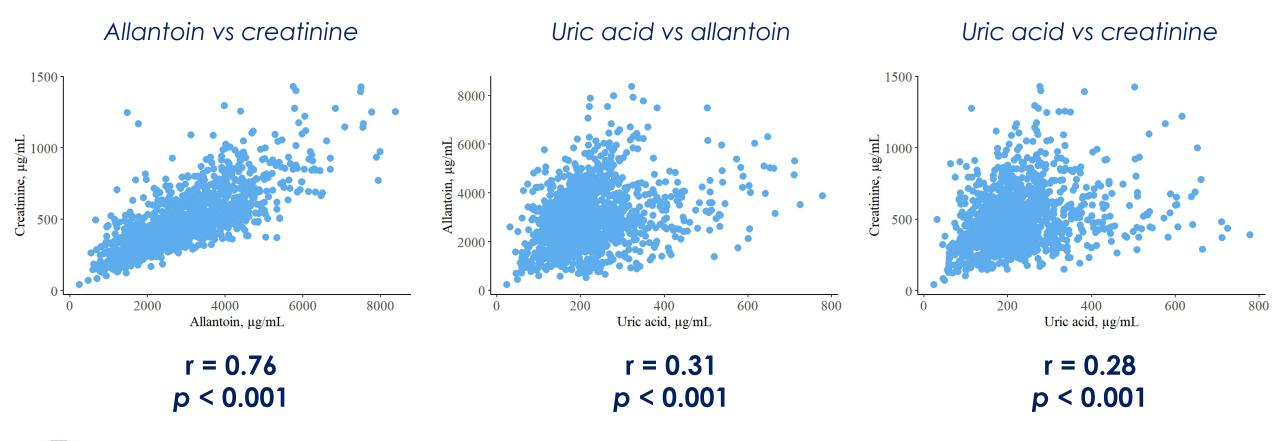
¹SD: standard deviation; CV: coefficient of variation.


Descriptive statistics¹ of urine traits

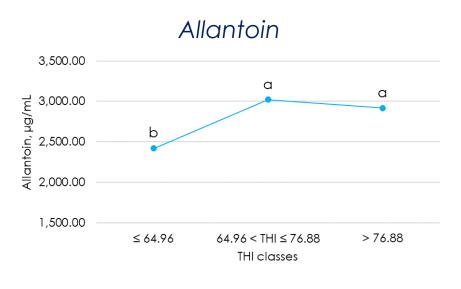

Urine trait	Mean	SD	CV, %	Minimun	Maximum
Allantoin, µg/mL	3,071.10	1,273.87	41.48	238.20	8,385,30
Creatinine, µg/mL	505.91	209.80	41.47	42.54	1,431.84
→ Uric acid, µg/mL	225.05	105.27	46.78	23.59	1,071.71

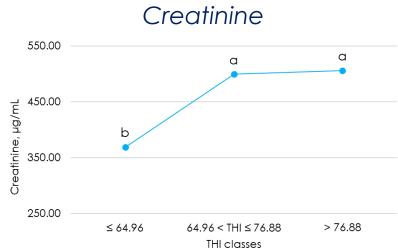

¹SD: standard deviation; CV: coefficient of variation.

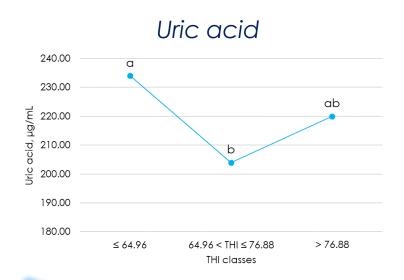
Distribution density plot of urine traits



All traits are normally distributed




Pearson correlation coefficients between urine traits



Effect of THI on urine traits (µg/mL)

THI = (1.8 * MT) - (1.0 - MU/100) * (MT - 14.39) + 32

where: MU = mean humidity

MT = mean temperature

18/23

Repeatability (RT), coefficient of repeatability (RT%), day of analysis reproducibility (RD $_{\text{Day}}$), and day of analysis coefficient of reproducibility (RD $_{\text{Day}}$ %) for urine traits

Urine trait	RT	RT%	RD _{Day}	RD _{Day} %
Allantoin, µg/mL	70.53	99.96	1055.04	90.86
Creatinine, µg/mL	14.91	99.94	44.80	99.39
Uric acid, µg/mL	11.73	95.86	24.34	78.03

Repeatability (RT), coefficient of repeatability (RT%), day of analysis reproducibility (RD $_{\text{Day}}$), and day of analysis coefficient of reproducibility (RD $_{\text{Day}}$ %) for urine traits

Urine trait	RT	RT%	RD_Day	RD _{Day} %
Allantoin, µg/mL	70.53	99.96	1055.04	90.86
Creatinine, µg/mL	14.91	99.94	44.80	99.39
Uric acid, µg/mL	11.73	95.86	24.34	78.03
	_	_		

Recovery (%) and relative standard deviation of repeatability (RSD_r) for urine traits

Urine trait	Spike level 1		Spike level 2		Spike level 3	
	Recovery	RSD _r	Recovery	RSDr	Recovery	RSDr
→ Allantoin, µg/mL	104.36	0.12	106.05	1.51	102.97	1.07
Creatinine, µg/mL	97.71	0.04	98.70	0.21	96.66	0.41
→ Uric acid, µg/mL	95.61	1.67	94.18	0.09	91.12	2.85

OUTLINE

INTRODUCTION AIM MATERIALS & METHODS RESULTS & DISCUSSION CONCLUSIONS

CONCLUSIONS

- ✓ A **simple and fast protocol** followed by a cheap HPLC method was validated for the simultaneous determination of **allantoin**, **creatinine** and **uric acid**.
- ✓ This method can be usefully adopted for large-scale studies aiming to investigate phenotypes related to heat stress in dairy cows.
- ✓ Results represent the first step for the development of reliable method capable of correlating THI data with indicators of heat stress.

Thank you for your attention!

Dr. Elena Visentin University of Padova – DAFNAE elena.visentin.10@phd.unipd.it

Thank you for your attention!

Dr. Elena Visentin University of Padova – DAFNAE elena.visentin.10@phd.unipd.it

Repeatability (RT) and reproducibility (RD) formulas from the International Organization for Standardization (ISO)

$$RT = 1.96\sqrt{2\sigma^2_e}$$

$$RD_{S} = 1.96 \sqrt{2(\sigma^{2}_{Day} + \sigma^{2}_{DayxCow})}$$

$$RT\% = \frac{\sigma^2_{cow} + \sigma^2_{Day} + \sigma^2_{DayxCow}}{\sigma^2_{cow} + \sigma^2_{Day} + \sigma^2_{DayxCow} + \sigma^2_{e}} \times 100$$

$$RD_S\% = \frac{\sigma^2_{cow}}{\sigma^2_{cow} + \sigma^2_{Day} + \sigma^2_{Dayxcow} + \sigma^2_{e}} \times 100$$

ISO.1994,b