

The volatolomic signature differs between primiparous and multiparous cows across different matrices

Jorge-Smeding, E.^{1,2}, Martin, C. ¹, Volmerange, L.³, Rochette, Y.¹, Violleau, F.³, Salah, N.², Silberberg, M.¹

¹INRAE, St-Genès-Champanelle, France

²Phileo by Lesaffre, Lamasquère France

³Ecole d'Ingénieurs de Purpan, France

Introduction

Nutritional and physiological research \rightarrow non-invasive biomarkers of the metabolic status

Metabolomics → potential development of biomarkers of different phenotypes

- √ Feed efficiency
- ✓ Ketosis, acidosis
- ✓ Product quality

(Saleem et al., 2012; Foroutan et al., 2020; Goldansaz et al., 2017)

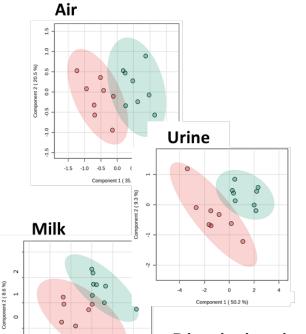
Volatolomics arises as an alternative within metabolomics approchaes

The profile of volatile organic compounds (VOC)

GC-MS targeted analysis → successfull discrimination of contrasting diets (Silberberg et al., 2018; Eichinger et al., 2023).

- ✓ Time consuming
- ✓ No feasible at field conditions

Single Ion Flow Tube - Mass Spectrometry (SIFT-MS)



- ✓ No sample preparation
- ✓ Easy and cheap

- ✓ Biomarkers of human and pathologies (Dharmawardana et al. 2020; Segers, et al., 2021)
- ✓ Succesfully used with different matrices, e.g.: urine, sweat or breath (Smith et al. 1999; Catala, et al., 2020; Belluomo, et al., 2021)

Single Ion Flow Tube - Mass Spectrometry (SIFT-MS)

Session 89 Wednesday 4th

Discrimination of high-fibre vs. high-concentrate diet

Preliminary results

Other sources of effect on the volatolomic profile of dairy cows?

Primiparous vs. multiparous cows

- ✓ physiological maturity
- ✓ milk yield
- ✓ behaviour
- ✓ metabolic differences (Wathes et al.,
 2017; Adrien et al., 2012; Saqib et al., 2018)

Should we take into account the parity when performing non-targeted volatolomics?

Is it possible to discriminate primiparous vs. multiparous (2nd, 3rd lacatation) cows?

Hypothesis

The metabolic differences between primiparous and multiparous cows affect the profile of volatile organic compounds (VOC) which can be determined by untargeted volatolomics based on SIFT-MS

Objective

To assess the volatolomic differences between primiparous and multiparous cows based on SIFT-MS untargeted volatolome of breath, ruminal liquid, feces, urine, milk and sweat.

Materials and Methods

PRIM

n = 10

1st lactation

73 ± 11 DIM

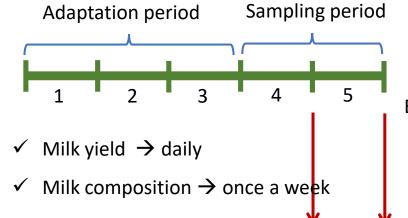
 $22.3 \pm 3.31 \, \text{kg/d milk}$

618 ± 41 kg BW

1.5 ± 0.20 BCS

MULT

n = 6

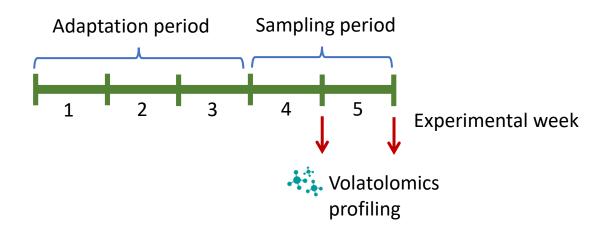

2nd lactation

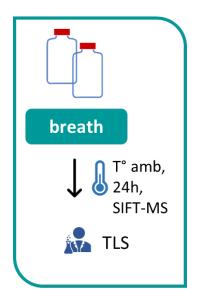
76 ± 11 DIM

 $23.0 \pm 1.59 \text{ kg/d milk}$

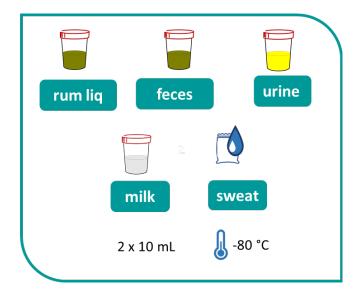
642 ± 49 kg BW

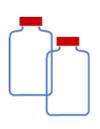
 1.4 ± 0.20 BCS


Experimental week


• Volatolomics profiling

Concentrate: 24 % DM

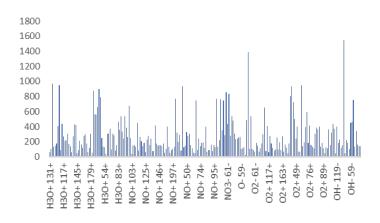




T° Amb (25 °)

breath

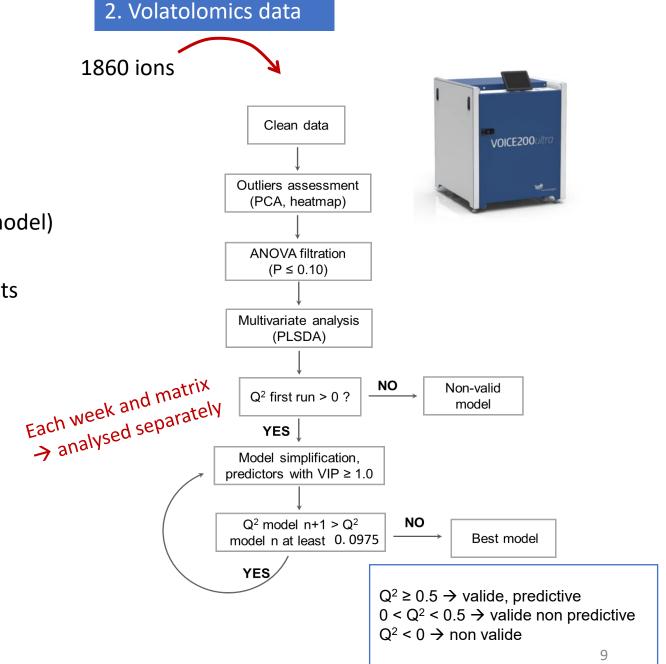
Heat (37°, 30 min) Headspace


milk

sweat

2 x 10 mL

1860 ions measured in 10 minutes



Statistical analyses

1. Productive data

DMI and performance as repeated measures (mixed model)

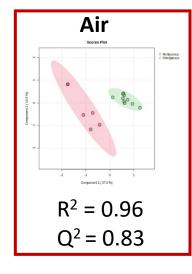

- Parity, week (4, 5), Parity × week → fixed effects
- Cow(parity) → random effect
- AR(1) as the covariance structure

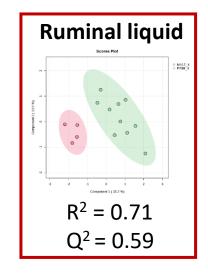
Results and discussion

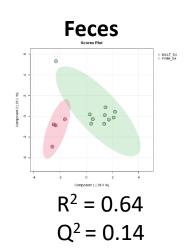
Table 1. DMI and productive performance in primiparous and multiparous cows in weeks 4 and 5

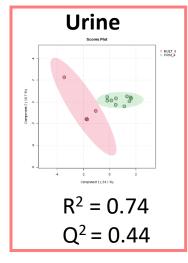
	LS-means			P-value		
Trait	PRIM	MULT	SEM	Diet	Week	Diet × Week
DMI (kg DM/d)	20.6	21.6	0.64	0.288	0.017	0.475
Milk yield (kg/d)	21.7	21.3	0.95	0.787	0.301	0.194
Milk fat (g/100 g)	3.37	3.84	0.144	0.042	0.004	0.727
Milk protein (g/100 g)	2.90	2.87	0.520	0.668	< 0.001	0.832

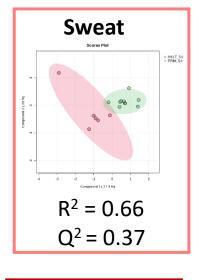
No major differences in terms of production and DMI

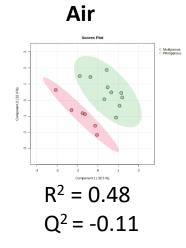

1180 ions effectively quantified:

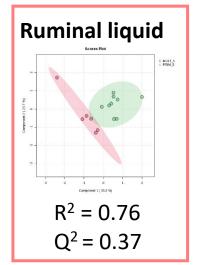

193 – 451 \rightarrow according to the matrix

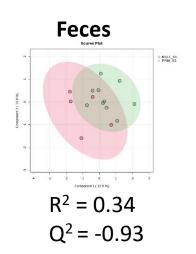


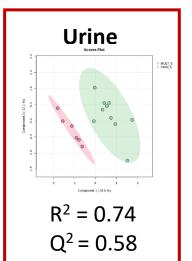


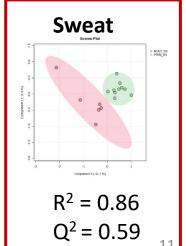

Week 4



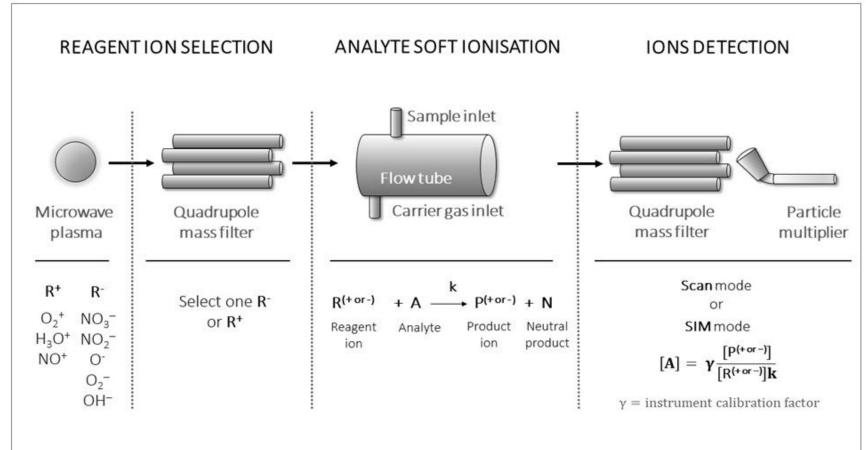





Week 5


INRAO

Take-home messages


- ✓ The **parity impact** the **volatolomics** profile of different matrices
- \checkmark Matrices related with the **host metabolism** \rightarrow better potential to **discriminate the parity class**
- ✓ The **breath** is possibly the most sensitive matrix to environmental interferences
 - → Integrate current developments to refine the breath sampling? (Islam et al., 2023)
- ✓ Ruminal liquid, urine and sweat → better consistency between sampling periods
- ✓ The results based on multiparous or primiparous only cannot be extrapolated between parities
 - → attention to the robustness of conclusions for field application

Thank you

