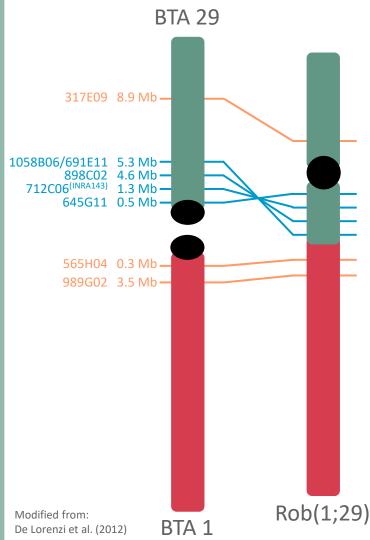


SNP-based identification of Robertsonian translocation 1;29 in 32 Italian cattle breeds

Cortellari M.a, Bionda A.a, Liotta L.b, Parma P.a, Crepaldi P.a

^aDipartimento di Scienze Agrarie e Ambientali, Milan University, Via Celoria 2, 20133, Milan, Italy ^bDipartimento di Scienze Veterinarie. Messina University. V.le Palatucci 13. 98168 Messina. Italy

E-mail: arianna.bionda@unimi.i


01

Introduction

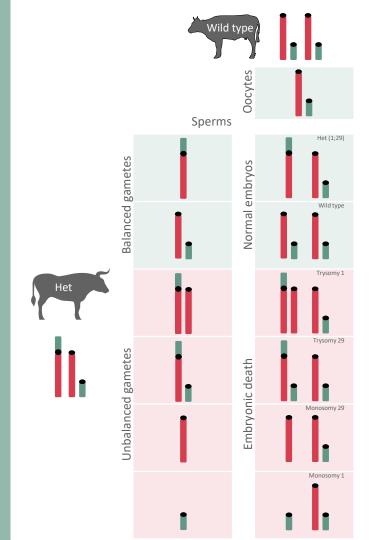
Robertsonian translocation 1;29

Chromosomal rearrangement involving the fusion of two acrocentric chromosomes (BTA 1 and 29) across their pericentromeric regions. No lack or gain of genetic material.

No meiotic recombination in the first centromeric region of BTA 29 due to the **inversion of a cosmid** around 5.4 Mb and its **migration** onto the q arm of rob(1;29).

Frequency in cattle

Rob(1;29) is known since 1964 and is the **most common** chromosomal aberration in cattle.

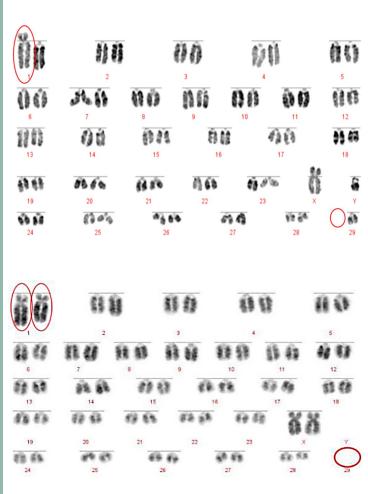

Mainly found in breeds aimed at **meat** production.

Chromosomes Involved in Rob Translocation (Centric Fusion)	Breed of Cattle	Frequency	Year	Reference
rob(1;29)	Swedish Red and White cattle	13-14%	1964	[35]
	Over 50 breeds of cattle		1964-2014	[31,32]
	British White	Up to 60%	1975	[33]
	Corsican	Up to 60%	1984	[34]
	local Portuguese cattle	above 50%	2008	[42]
	Maremmana	18.8%		
	Romagnola	13.0%	2008	[26]
	Podolian cattle	11.7%		
	Marchigiana	11.7%		
	Chianina	1.4%		
	Limousine	12.3%		
	blonde d'Aquitaine	7.9%	2008	[26]
	Charolaise	1.2%		
	Rubia Gallega	21.9%	2008	[26]
	Retinta	16.1%		
	Czech Simmental	27.08%	2009	[27]
	Andalusian breeds: Negra Andaluza	19.45%	2013	[43]
	Berrenda en Negro	28.9%-32.6%		
	Criollo	12.3%		
	Swiss American	7.5%	2015	[44]
	Braunvieh (Swiss Brown)	1.4%		
	Holstein	0.4%		

Holečková et al. (2021)

Effects on fertility

Het rob(1;29) carriers show **impaired infertility** due to the production of genetically **unbalanced gametes** and, consequently, unbalanced embryos that cannot survive.



Screening

Screening programs are in place in many European countries, based on **karyological tests**.

However, only a limited part of the population (e.g., bulls for breeding) is screened due to:

- High costs and prolonged time
- Need for fresh blood samples
- Specialized personnel requirements

Can **SNP** data routinely collected by breeder associations be used to identify rob(1;29) carriers?

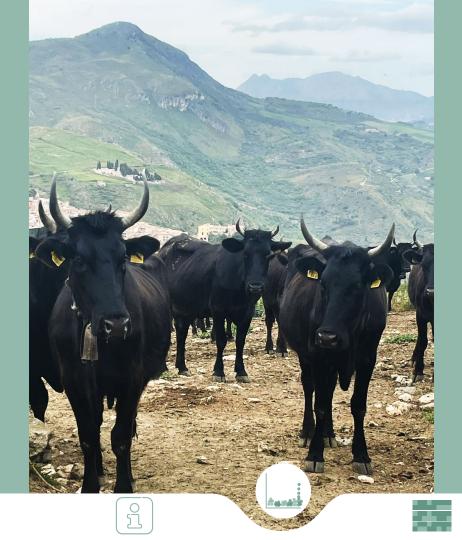
02

Methods and Results

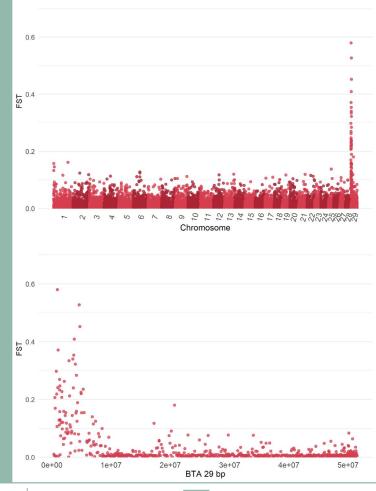
DATASETS

Medium-density SNP data were retrieved from public data, newly genotyped animals or breeder association datasets.

For a subset of individuals a **cytogenetic test** was available.


	Dataset 1	Dataset 2	Dataset 3	
Data origin	ANABIC screened subjects	BOVITA public dataset	Breeder associations	
N. Breeds	5 Italian beef cattle breeds	32 Italian cattle breeds	9 Italian cattle breeds	
N. Subjects	151	800	1711	
N. Cytogetic tests	1 hom, 47 het, 103 wild type	-	1 hom, 47 het, 105 wild type	
SNPchip	GGP Bovine 33k	Illumina 50K	GGP Bovine 33k + Illumina 150k + Illumina 50K	
N. Subset SNPs	75	59	72	

FST


Subjects of Dataset 1 with a cytogenetic diagnosis of being wild type or rob(1;29) carriers were compared through FST analysis.

FST wild type *vs* carriers

- No peaks on BTA 1
- Clear peak on the first 6 Mb of BTA 29
- This regions corresponds to the one involved in the inversion of translocated chromosomes
- For further analyses, we only used this highlighted region

HAPLOTYPE ANALYSIS

The **haplotype** of the region with peaking FST values, i.e., the first 6 Mb of BTA 29, was compared between the hom rob(1;29) carrier and the het carriers or the wild type subjects.

Dataset 2

Dataset 3

Wild type had max 64 SNPs (85%) in common with the hom subject.

Wild type had max 50 SNPs (85%) in common with the hom subject.

Wild type had max 61 SNPs (85%) in common with the hom subject.

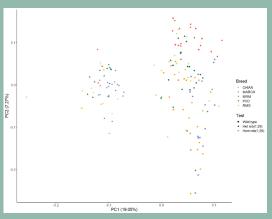
Het individuals had at least 71 SNPs (99%) in common with the hom subject.

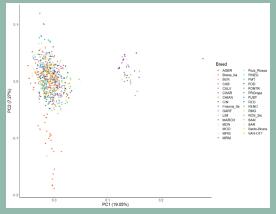
Het individuals had all the genotyped SNPs (100%) in common with the hom.

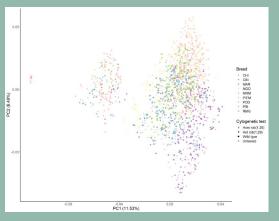
Het individuals had at least 66 SNPs (96%) in common with the hom subject.

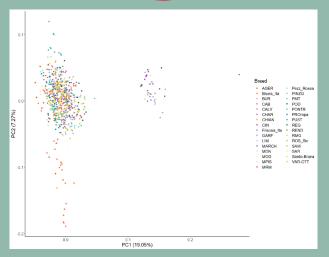
PCA

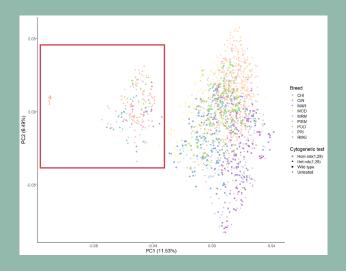
A principal component analysis (PCA) was performed on all the subjects using only the highlighted region, to assess if a separation among the three groups was visible.







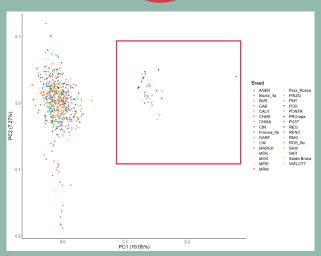


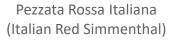


Rob(1;29) frequency in population for screened breeds

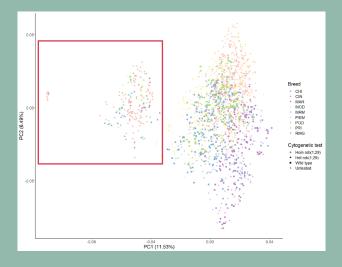
Podolica	14%
Maremmana	12%
Romagnola	11%
Marchigiana	8%
Chianina	1%

Thanks to ANABIC association for data and support



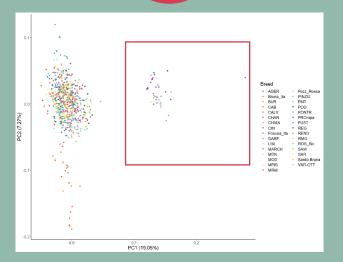


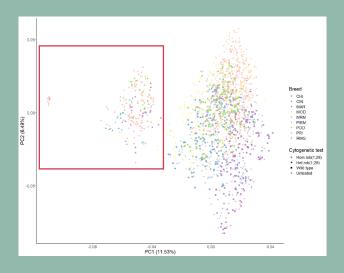
Breeds with no carriers according to both datasetes



Piedmontese

Thanks to ANAPRI and ANABORAPI associations for data and support.

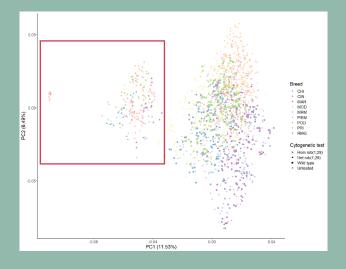




Unscreened breeds with high rob(1;29) frequency

Thanks to ANAPRI association and Dual Purpose project for data and support.

Dataset 3

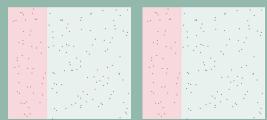

Breed AAGE - PEZ_ROSSE BING IJU - PINZG BING PMT - CAB - POT - CAB

Cinisara breed

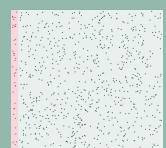
- Dual-purpose Sicilian breed
- Podolian origin
- High frequency found both in Dataset 2 and 3
- Presence of homozygous carriers
- Confirmed with cytogenetic tests
- No fertility problems?

PARTITIONING ANALYSIS

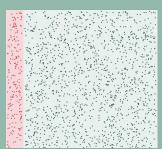
Using JMP 16, a partitioning analysis was conducted on the SNPs belonging to the haplotype to identify the smallest possible number of SNPs capable of distinguishing translocated subjects from wild type ones.



We identified a **single SNP** that, alone, identified all the carriers, but also 4 false positives (96.2% specificity).


When adding also a second one, we obtained 100% specificity and 100% sensitivity.

N = 151, GGP Bovine 33k


A single SNP that was not present in other arrays discriminated carriers and wild type with a single false positive (99.9% specificity and 100% sensitivity).

N = 800, Illumina 50k

Three specific SNPs (two of which were those found in Dataset 1) were enough to correctly identify all the individuals with 100% specificity and 100% sensitivity.

N = 1711, GGP Bovine 33k + Illumina 150k + Illumina 800k

03

Conclusions

01

SNP-based screening

SNP data represent a practical and cost-effective tool for **widespread rob(1;29) pre-screening** and prompt identification of carriers.

02

Integration into panels

We recommend **adding SNPs** from this region **to SNP panels** (e.g., ISAG SNP Parentage Panel).

03

Common haplotype

All carriers shared the same haplotype supporting the theory of a **common ancestor**.

04

Breed frequencies

High frequency in unscreened populations, such as the Cinisara breed.

Thanks!

scientific reports

Identification of a common haplotype in carriers of rob(1;29) in 32 Italian cattle breeds

Matteo Cortellari, Arianna Bionda [™], Luigi Liotta, Fiorella Sbarra, Pietro Parma & Paola Crepalo

Scientific Reports 14, Article number: 2057 (2024) | Cite this article

The authors are grateful to **ANABIC**, **ANABORAPI**, and **ANAPRI** associations, and to the **Dual-Purpose project** for providing data and support.

This study was carried out within the **Agritech National Research Center** and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/2022, CN00000022). This manuscript reflects only the authors' views and opinions, neither the European Union nor the European Commission can be considered responsible for them.

E-mail: arianna.bionda@unimi.it