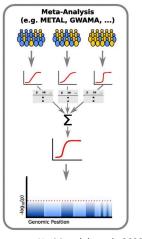


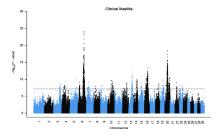
Genomic prediction using functional annotations and QTL features in dairy and beef cattle breeds

Pascal Croiseau, Fanny Mollandin, Andréa Rau, Marie-Pierre Sanchez and Didier Boichard

INRAe

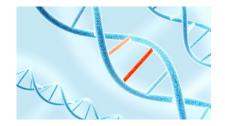

Objectives

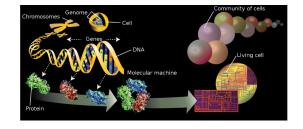
 Combining heterogeneous sources of information for biologically driven genomic selection



50K chip SNP

Meta-Analyses Conducted in BovReg




Nasirigerdeh et al., 2022

GWAS at the whole genome sequence level

Known causal mutation

Genomic Features (BovReg & CGTeX)

- Adipose
- Liver
- Mammary
- Muscle

Material

3323 Normand bulls

4261 Montbéliard bulls

8789 Charolaise cows

INRAO

Material

		Training pop	Validation pop	total
Montbéliarde	5 production traits	3408	853	4261
Normande	5 production traits	2657	666	3323
	weight at 18 months	6250	1564	7814
Charolaise	thickness of bones, muscular and skeletal development	6790	1699	8789

Genomic Features

✓ CGTEX

- Only for dairy cattle
 - 3 tissues investigated : Adipose / Liver / Mammary Gland
- Step1: Based on TWAS, selection of all significant genes for the different production traits (p-value <0.05)
- Step2 : For each of these genes, selection of significant variants (p-value $<10^{-7}$) in the tissues of interest

✓ BovReg

- Use of the cis-eQTL top Variant results from BovReg
- 2 tissues for Montbéliarde and Normande breed
 - o Liver
 - Adipose
- 1 tissue for the Charolaise breed
 - Muscle

p. 5

Genomic features

_				Genomic Features				
		50K	GWAS	Meta-Analysis GWAS	ССТеХ	BovReg Adipose	BovReg Liver	BovReg Mammary gland
	Milk yield	43570	9899	12874	10834	2307	8807	2333
	Fat yield	43570	9899	6661	5017	2307	8807	2333
Montbéliarde	Protein yield	43570	9899	6211	11133	2307	8807	2333
	Fat content	43570	9899	6211	11133	2307	8807	2333
	Protein content	43570	9899	30367	9430	2307	8807	2333
	Milk yield	43570	9899	12827	10412	2307	8807	2333
	Fat yield	43570	9899	6655	5045	2307	8807	2333
Normande	Protein yield	43570	9899	6573	11349	2307	8807	2333
	Fat content	43570	9899	18684	5666	2307	8807	2333
	Protein content	43570	9899	30089	9399	2307	8807	2333

		50K	Meta-Analysis GWAS	BovReg Muscle	
	muscular devlopment	43570	4383	450	
Charolaise	skeletal development	43570	3484	450	
	thickness of bones	43570	3484	450	
	weight at 18 months	43570	1630	450	

Genomic Evaluations approaches

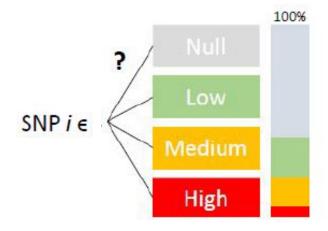
- BayesRCO: software developed by F. Mollandin during her PhD funded by GenSwitch
 - √ Bayes C, Bayes R, Bayes RC, Bayes RCn

Mollandin et al. BMC Bioinformatics (2022) 23:365 https://doi.org/10.1186/s12859-022-04914-5

BMC Bioinformatics

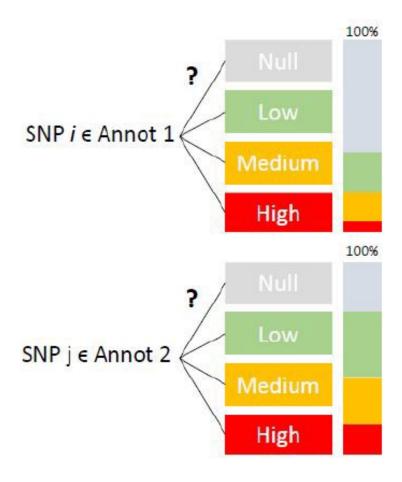
RESEARCH Open Access

Accounting for overlapping annotations in genomic prediction models of complex traits

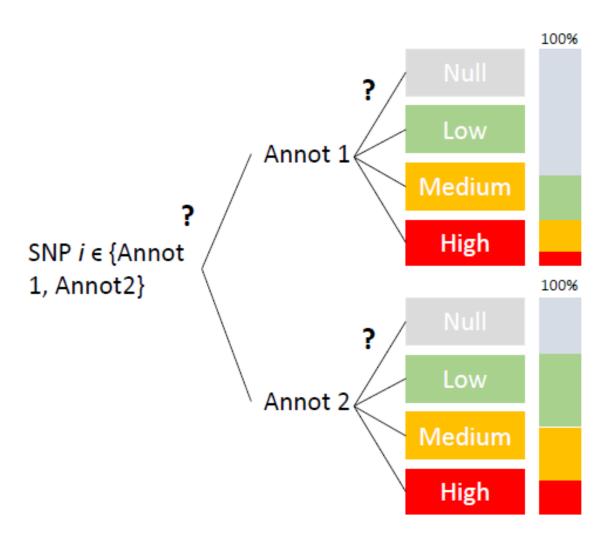

Fanny Mollandin^{1*}, Hélène Gilbert², Pascal Croiseau¹ and Andrea Rau^{1,3}

Funding

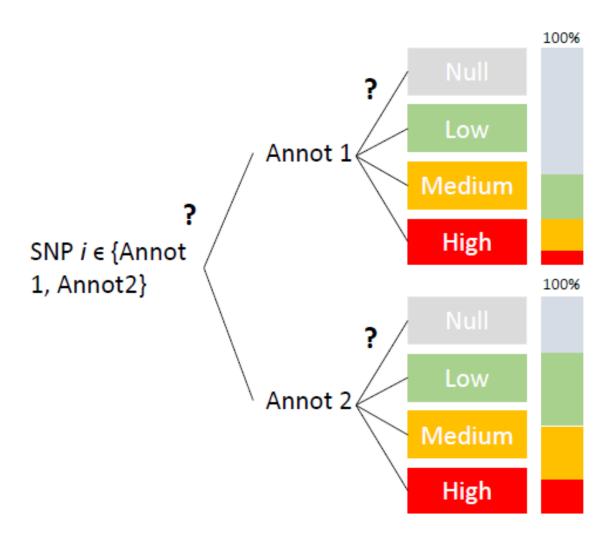
This work is part of the GENE-SWitCH project that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the grant agreement n^o817998. This work also benefited from the clustering activities organized with the BovReg project, part of the European Union's Horizon 2020 Research and Innovation Programme under the grant agreement n^o815668. The financial support of the French National Agency of Research (ANR PigHeaT, ANR-12-ADAP-0015) is also gratefully acknowledged.



Bayes R



Bayes RC



Bayes RCn

Bayes RCn

p. 11

Results: Montbéliarde

	50K	GWAS	Meta-Analysis GWAS	s genomic features (CGTeX+BovReg)
milk yield	0.365	0.354	0.321	0.268
fat yield	0.403	0.402	0.352	0.254
protein yield	0.463	0.371	0.324	0.243
fat content	0.463	0.182	0.250	0.297
protein content	0.544	0.432	0.466	0.158

• The genomic predictions obtained using the selected groups of SNPs (Meta, GWAS and genomic features) range from 0.158 to 0.466.

Results: Montbéliarde

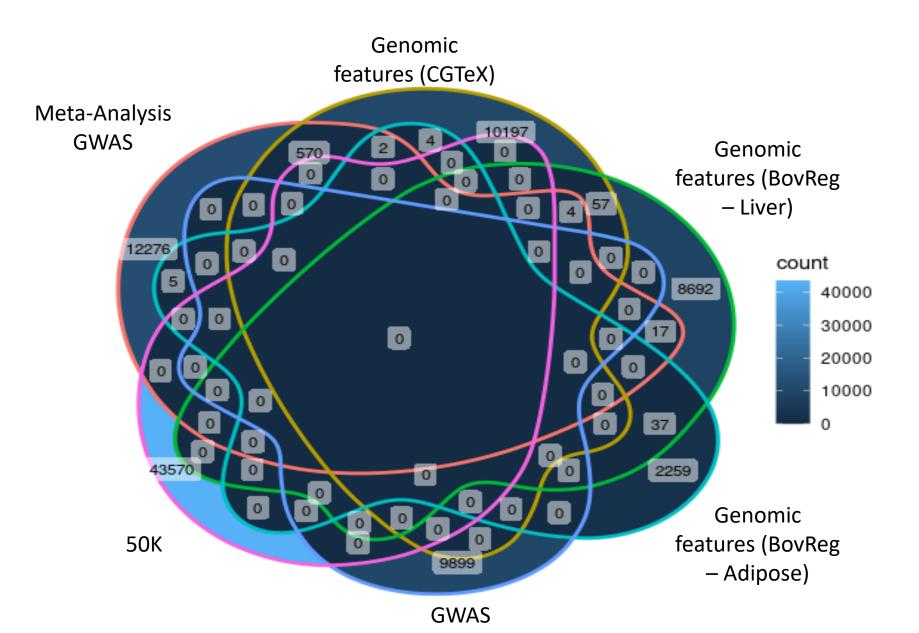
	50K	GWAS	Meta-Analysis GWAS	s genomic features (CGTeX+BovReg)	BayesR	BayesRC	BayesRCpi
milk yield	0.365	0.354	0.321	0.268	0.426	0.419	0.419
fat yield	0.403	0.402	0.352	0.254	0.431	0.433	0.429
protein yield	0.463	0.371	0.324	0.243	0.437	0.436	0.435
fat content	0.463	0.182	0.250	0.297	0.452	0.448	0.447
protein content	0.544	0.432	0.466	0.158	0.551	0.546	0.548

- The genomic predictions obtained using the selected groups of SNPs (Meta, GWAS and genomic features) range from 0.158 to 0.466.
- The combined use of these SNP groups and the 50K chip improves prediction accuracy for 3 of the 5 production traits. (between 1 and 6 points of correlation).
- Models that take into account multiple annotations show no improvement

Results: Normande

	50K	GWAS	Meta-Analysis GWAS	genomic features (CGTeX+BovReg)	BayesR	BayesRC	BayesRCpi
milk yield	0.399	0.237	0.181	0.069	0.351	0.353	0.351
fat yield	0.406	0.254	0.179	0.093	0.402	0.396	0.388
protein yield	0.345	0.223	0.133	0.114	0.350	0.347	0.343
fat content	0.537	0.440	0.434	0.344	0.536	0.537	0.535
protein content	0.487	0.173	0.474	0.150	0.524	0.440	0.436

• the inclusion of annotation classes does not improve the accuracy of genomic predictions, except for protein content.


Results: Charolaise

	50K	GWAS	Meta-Analysis ge GWAS	enomic features (BovReg)	BayesR	BayesRC	BayesRCpi
muscular development	0.328	Х	0.329	0.171	0.398	0.396	0.397
skeletal development	0.365	Х	0.240	0.168	0.378	0.383	0.383
thickness of bones	0.312	Х	0.238	0.171	0.325	0.326	0.326
weight at 18m	0.297	Х	0.178	0.135	0.308	0.307	0.307

- The inclusion of annotation classes improves the accuracy of genomic predictions for all traits, but only marginally, except for muscular development (+7 points of correlation).
- As for the other breeds, BayesRC and BayesRCn don't improve the prediction accuracy.

Montbéliarde – Milk Yield

Montbéliarde – Milk Yield

BayesR

	effect					
	null	small	medium	strong		
CGTeX	0	10828	6	0		
BovReg Liver	0	8798	9	0		
BovReg Adipose	0	2301	6	0		
Meta-Analysis GWAS	0	12873	1	0		
GWAS	0	9897	2	0		
50K	0	43551	19	0		

BayesRCπ

		null	small	medium	strong
	CGTeX	0	10826	8	0
	BovReg Liver	0	8791	16	0
π	BovReg Adipose	0	2294	13	0
	Meta-Analysis GWAS	0	0	12873	1
	GWAS	0	9897	2	0
	50K	43132	411	27	0

effect

Conclusion

- The use of heterogeneous sources of information does not systematically lead to improved genomic predictions
 - ✓ Even if for some particular cases, substantial gain in correlation could be observed.
- The BayesRCn model did not improve the accuracy of genomic predictions
 - ✓ But few SNPs were present in at least 2 annotation classes.
- However, we can hope that the most important markers for a given trait will be better exploited in the BayesRC and BayesRCn models.
 - ✓ more stable effects over time
 - ✓ less sensitive to LD

Conclusion

- The use of heterogeneous sources of information does not systematically lead to improved genomic predictions
 - ✓ Even if for some particular cases, substantial gain in correlation could be observed.
- The BayesRCn model did not improve the accuracy of genomic predictions
 - ✓ But few SNPs were present in at least 2 annotation classes.
- However, we can hope that the most important markers for a given trait will be better exploited in the BayesRC and BayesRCn models.
 - ✓ more stable effects over time
 - ✓ less sensitive to LD

Thank you for your attention!

