

Animal and Food Genomics Group

A genomic-based approach to redefine herd book information in two local cattle breeds

Giuseppina Schiavo

Department of Agricultural and Food Sciences Division of Animal Sciences University of Bologna, Bologna Italy

giuseppina.schiavo2@unibo.it

Reggiana and Modenese cattle breeds

Autochthonous cattle breeds from Emilia Romagna region, in the North of Italy Historical traces go back to XII century

Reggiana

Modenese

Unique mono-breed branded Parmigiano-Reggiano cheese

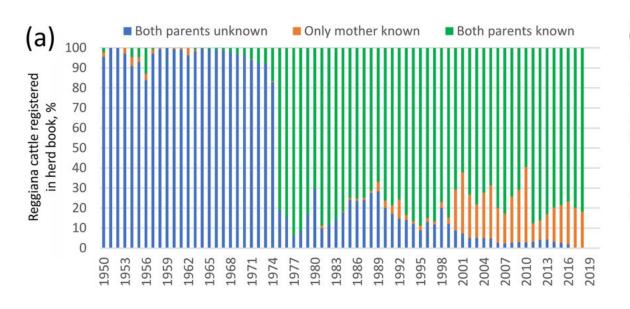
Reggiana and Modenese cattle breeds

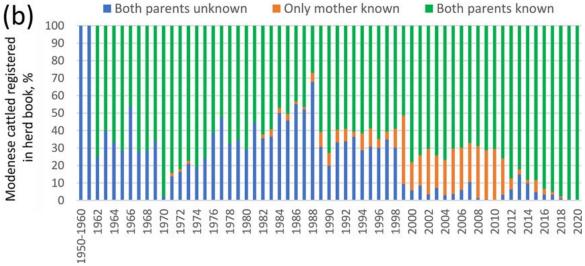
Autochthonous cattle breeds from Emilia Romagna region, in the North of Italy Historical traces go back to XII century

Reggiana

- •At present about 4500 cows raised in about 100 farms
- •red coat color, "fromentino", pink or pale muzzle

Modenese


- About 1200 cows
- •White / pale grey color

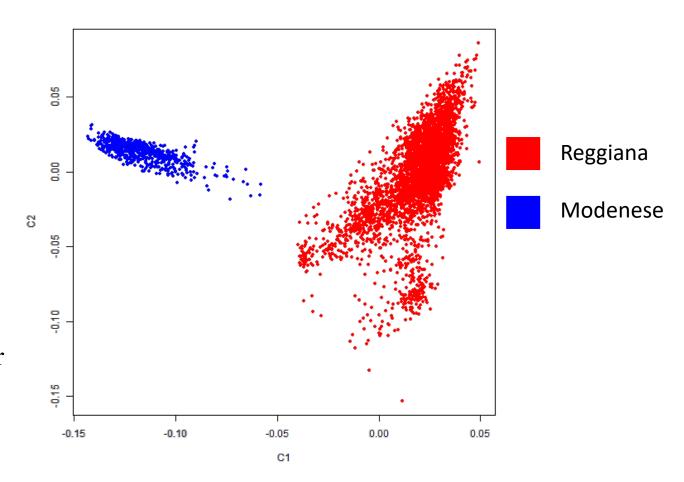

Unique mono-breed branded Parmigiano-Reggiano cheese

Reggiana and Modenese pedigree

As in many local breeds, pedigree records in Reggiana and Modenese herd books are not always complete.

AIM

Identify inconsistencies and reconstruct pedigree of Reggiana and Modenese cattle breed



Materials and Methods: animals and genotyping

4025 Reggiana cattle, including commonly used 288 sires from 50 different farms

710 Modenese including 15 sires from 20 different farms

GGP Bovine 150K SNP Chip 139464 autosomal SNPs remained after PLINK filtering

MDS of the individuals from both breeds

In addition: 300 duplicates – evaluation of error rate

Materials and Methods: analysis

Combination of several approaches to estimate relatedness using DNA markers:

- 1) Identity by Descent (IBD) *PLINK* software, *KING* software
- 2) Pairwise comparisons based on Opposing Homozygotes (OH)
- Define inconsistencies in parent-offspring pairs
- Define inconsistencies between pairs of duplicates to estimate error rate
- Evaluate mapping problems and/or structural variants in the individuals
- 3) **Comparison with genomic inbreeding** and pedigree based inbreeding after the corrections
- 4) **Correction/Reconstruction** of the pedigree records

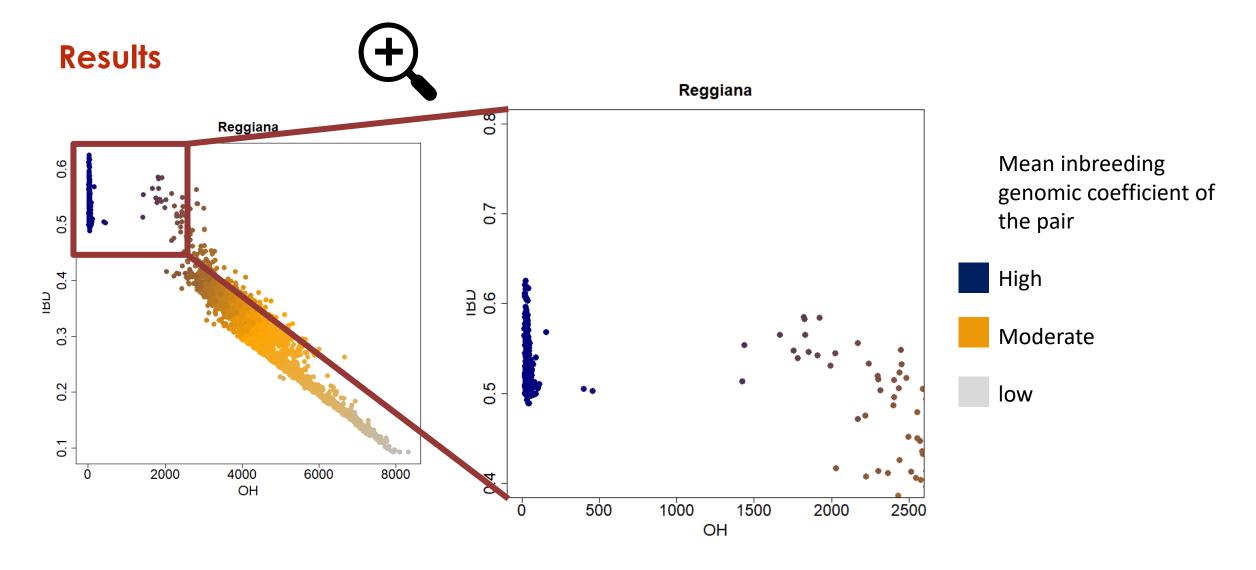
Relationship estimation

Correction and integration

Estimated degrees of relatedness and related statistics

Degree of relatedness	Mean IBD	Min / Max IBD	Mean Number of OH SNPs	Min / Max #OH SNPs
Unrelated	0	0/0	11002.3 ± 989.1	9916 / 12453
3rd	0.019 ± 0.03	0 / 0.05855	9266.9 ± 773.7	7444 / 11351
2nd	0.072 ± 0.05	0.0392 / 0.7145	7095.3 ± 964.6	4598 / 8596
Full Siblings	0.132 ± 0.05	0.1242 / 0.14105	2104.5 ± 405.2	1818 / 2391
Parent-Offspring	0.259 ± 0.02	min=0.24365,max=0.3126	35.4 ± 10.4	min=11, max=155

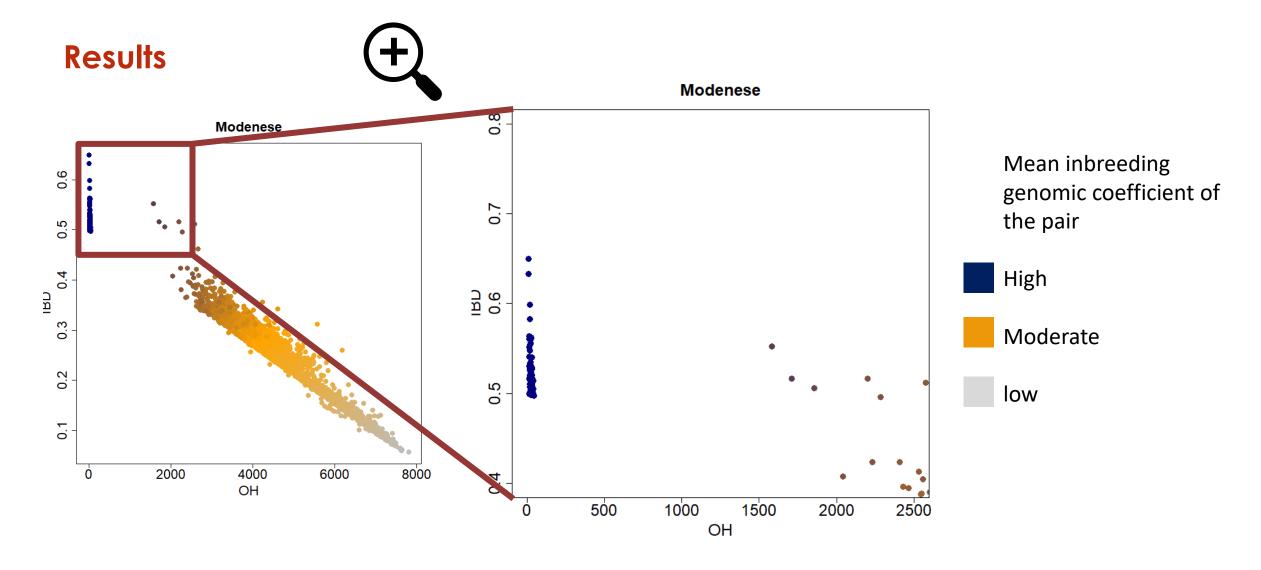
Call rate evaluation:


for duplicate samples, OH SNPs ranged from 0 to a maximum of 9 with an average of 4

Combination of IBD estimation and OH to validate the Parent-Offspring relationship

Some cases:

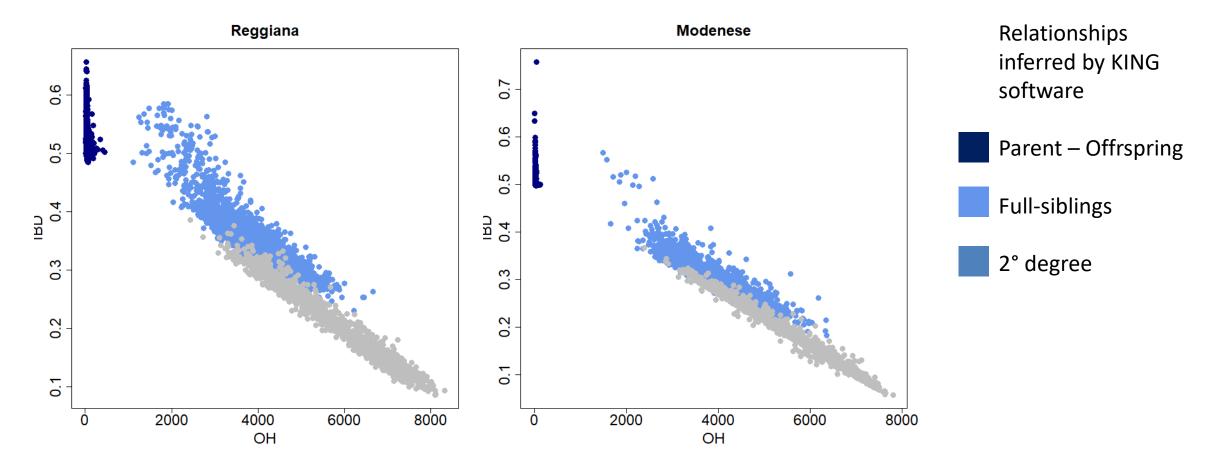
IBD >= 0.25 **but** OH > 1800



X-axes: number of Opposite Homozygous SNPs.

Y axes: PLINK – IBD

False Parent-Offspring estimation if only looking at Plink - IBD



X-axes: number of Opposite Homozygous SNPs.

Y axes: PLINK – IBD

False Parent-Offspring estimation if only looking at Plink - IBD

X-axes: number of Opposite Homozygous SNPs.

Y axes: PLINK – IBD

Parentage information from pedigree records was not correct for about 10% of the comparisons.

					Fathers		
		Correct	Wrong	Swap	Reconstructed	Not genotyped	Total
	Correct	928	131	112	13	175	1359
SIS	Wrong	129	79	86	12	57	363
Mothers	Swap	144	94	125	9	62	434
Σ	Reconstructed	1	1	2	11	31	46
	Not genotyped	796	248	176	76	527	1823
	Total	1998	553	501	121	852	4025

					Fathers		
		Correct	Wrong	Swap	Reconstructed	Not genotyped	Total
	Correct	8	0	0	0	179	187
	Wrong	2	0	1	0	40	43
Ś	Swap	2	0	0	0	55	57
Mothers	Reconstructed	0	0	0	0	0	0
	Not genotyped	0	1	1	0	421	423
	Total	12	1	2	0	695	710
		·	<u> </u>				

Different scenarios for pedigree correction and recostruction

Parentage information from pedigree records was not correct for about 10% of the comparisons.

					Fathers		
		Correct	Wrong	Swap	Reconstructed	Not genotyped	Total
	Correct	928	131	112	13	175	1359
SIS	Wrong	129	79	86	12	57	363
Mothers	Swap	144	94	125	9	62	434
Σ	Reconstructed	1	1	2	11	31	46
	Not genotyped	796	248	176	76	527	1823
	Total	1998	553	501	121	852	4025

				Fathers		
	Correct	Wrong	Swap	Reconstructed	Not genotyped	Total
Correct	8	0	0	0	179	187
Wrong	2	0	1	0	40	43
Swap	2	0	0	0	55	57
Reconstructed	0	0	0	0	0	0
Not genotyped	0	1	1	0	421	423
Total	12	1	2	0	695	710
	Wrong Swap Reconstructed Not genotyped	Correct 8 Wrong 2 Swap 2 Reconstructed 0 Not genotyped 0	Correct 8 0 Wrong 2 0 Swap 2 0 Reconstructed 0 0 Not genotyped 0 1	Correct 8 0 0 Wrong 2 0 1 Swap 2 0 0 Reconstructed 0 0 0 Not genotyped 0 1 1	Correct 8 0 0 0 Wrong 2 0 1 0 Swap 2 0 0 0 Reconstructed 0 0 0 0 Not genotyped 0 1 1 0	Correct Wrong Swap Reconstructed Not genotyped Correct 8 0 0 0 179 Wrong 2 0 1 0 40 Swap 2 0 0 0 55 Reconstructed 0 0 0 0 0 Not genotyped 0 1 1 0 421

Genomic relation Parent-Offspring matches with Pedigree information:

Parentage information from pedigree records was not correct for about 10% of the comparisons.

					Fathers		
		Correct	Wrong	Swap	Reconstructed	Not genotyped	Total
	Correct	928	131	112	13	175	1359
SIS	Wrong	129	79	86	12	57	363
Mothers	Swap	144	94	125	9	62	434
Σ	Reconstructed	1	1	2	11	31	46
	Not genotyped	796	248	176	76	527	1823
	Total	1998	553	501	121	852	4025

					Fathers		
		Correct	Wrong	Swap	Reconstructed	Not genotyped	Total
	Correct	8	0	0	0	179	187
	Wrong	2	0	1	0	40	43
Ś	Swap	2	0	0	0	55	57
Mothers	Reconstructed	0	0	0	0	0	0
	Not genotyped	0	1	1	0	421	423
	Total	12	1	2	0	695	710

Incomplete pedigree records:

The records are updated with the correct parent information

Parentage information from pedigree records was not correct for about 10% of the comparisons.

					Fathers		
		Correct	Wrong	Swap	Reconstructed	Not genotyped	Total
	Correct	928	131	112	13	175	1359
SIS	Wrong	129	79	86	12	57	363
Mothers	Swap	144	94	125	9	62	434
Σ	Reconstructed	1	1	2	11	31	46
	Not genotyped	796	248	176	76	527	1823
	Total	1998	553	501	121	852	4025

					Fathers		
		Correct	Wrong	Swap	Reconstructed	Not genotyped	Total
	Correct	8	0	0	0	179	187
	Wrong	2	0	1	0	40	43
S	Swap	2	0	0	0	55	57
Mothers	Reconstructed	0	0	0	0	0	0
	Not genotyped	0	1	1	0	421	423
	Total	12	1	2	0	695	710

Wrong pedigree records:

Among the genotyped animals, none of them results in a Parent-Offspring relationship

The records are updated as missing

Parentage information from pedigree records was not correct for about 10% of the comparisons.

					Fathers								Fathers	
		Correct	Wrong	Swap	Reconstructed	Not genotyped	l Total			Correct	Wrong	Swap	Reconstructed	Not genotyped
	Correct	928	131	112	13	175	1359		Correct	8	0	0	0	179
S	Wrong	129	79	86	12	57	363	<u>S</u>	Wrong	2	0	1	0	40
othe	Swap	144	94	125	9	62	434	othe	Swap	2	0	0	0	55
Σ	Reconstructed	1	1	2	11	31	46	Σ	Reconstructed	0	0	0	0	0
	Not genotyped	796	248	176	76	527	1823		Not genotyped	0	1	1	0	421
	Total	1998	553	501	121	852	4025		Total	12	1	2	0	695

Reggiana – fathers: 0.17 Reggiana – mothers: 0.16 Proportion of wrong records among the pairs of genotyped animals

Modenese – fathers: 0.07 (few sires)

Modenese – mothers: 0.14

710

Parentage information from pedigree records was not correct for about 10% of the comparisons.

	Correct	Not correct	Recons	structed Not genot	yped Total	
Correct		84	10	6	27	127
Not correct		10	2	1	7	20
Reconstructed		6	0	5	2	13
Not genotyped		41	17	9	36	103
Total		141	29	21	72	263

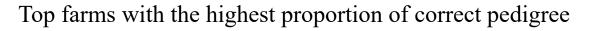
Some examples divided by farm

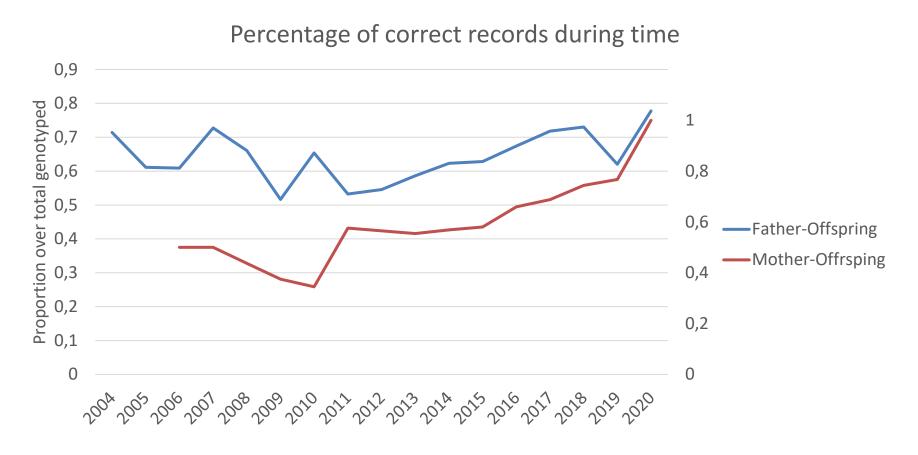
	Correct	Not correct	Rec	onstructed Not genot	yped Total	
Correct		9	1	1	4	15
Not correct		3	8	11	4	26
Reconstructed		4	4	11	4	23
Not genotyped		27	20	12	20	79
Total		43	33	35	32	143

Different situations for fathers' and mothers' records depending on the farm and on their farming system

Correct fathers proportion	Farm	Total genotyped
1	Farm1	13
0.93	Farm2	91
0.902	Farm3	51
0.891	Farm4	50
0.857	Farm5	18
0.844	Farm6	171
0.842	Farm7	22
0.833	Farm8	16
0.828	Farm9	29
0.825	Farm10	103
0.8	Farm11	74
0.8	Farm12	28
0.765	Farm13	75
0.757	Farm14	39

Correct mothers proportion	Farm	Total genotyped
1	Farm7	22
1	Farm33	8
0.923	Farm30	62
0.91	Farm6	171
0.889	Farm25	17
0.857	Farm10	103
0.85	Farm13	75
0.833	Farm12	28
0.788	Farm17	263
0.758	Farm2	91
0.75	Farm9	29
0.741	Farm35	72
0.739	Farm16	29
0.72	Farm18	66

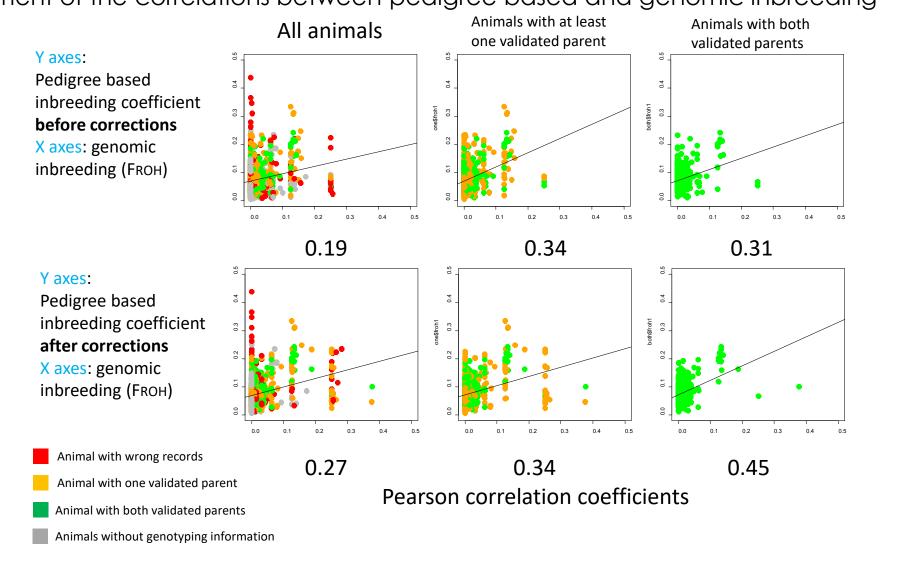

Correct mothers proportion	Farm	Total genotyped
1	Farm14	11
1	Farm24	2
1	Farm11	1
1	Farm21	1
0.866667	Farm9	27
0.75	Farm19	12
0.722222	Farm2	28
0.6875	Farm6	19
0.666667	Farm4	370
0.666667	Farm20	3
0.666667	Farm22	3
0.655172	Farm1	32
0.5	Farm12	26



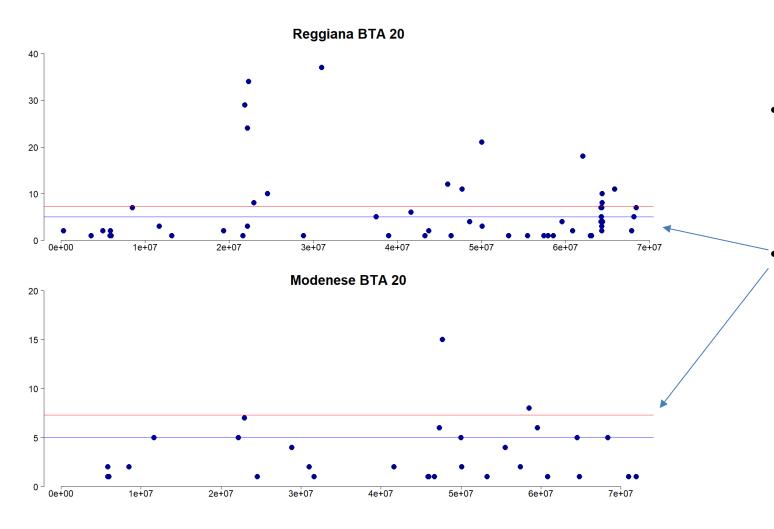
For Modenese: 13 corrected/15 total sires

Reconstruction and correction

Correctness improves during time (Reggiana)



Information about farms were used to correct pedigree (i.e. change of personnel, lactation and delivery records)


Recostruction and correction

After the corrections – **Proof of concept**: Improvement of the correlations between pedigree based and genomic inbreeding

Results – Regions of incompatibility

Incompatible opposite SNPs shared by all animals in both breeds may indicate mapping/assembly issues;

Differences in the Incompatibility patterns May indicated structural variations that are specific for the breed

Conclusion and Perspectives

- Combining IBD estimates and Opposing Homozygotes can be helpful in the estimation of the degree of relationship
- By combining information about the farm and genotyping data it is possible to reconstruct problematic pedigree information
- Around 4% of the Reggiana and Modenese pedigree of the active has been reconstructed or corrected
- Genotyping of the totality of the breeds is ongoing
- The routine application of this method will improve both the managing and conservation of Reggiana and Modenese cattle breed and the accuracy of estimated breeding values.

Animal and Food Genomics Group

Luca Fontanesi Full Professor

Samuele Bovo
Junior Assistant Professor
Bioinformatics – data analysis

Francesca Bertolini Associate Professor

Anisa Ribani
Junior Assistant Professor *Molecular genetics*

Valeria Taurisano
Post-doc *Molecular genetics*

Stefania Dall'Olio
Associate Professor

Giuseppina Schiavo Junior Assistant Professor Bioinformatics – data analysis

Matteo Bolner
PhD student
Data analysis

Paolo Zambonelli Associate Professor

Jacopo Vegni Post-Doc Data analysis

Acknowledgments

National Association of Reggiana cattle breeders (ANABORARE)

Massimo Bonacini, Jessica Maranzani, Antonio Porzio

This work has received funding from:

• PSRN (Programma di Sviluppo Rurale Nazionale) Dual Breeding 2 (co-funded by the European Agricultural Fund for Rural Development of the European Union and by the MASAF).

Thank you! Questions?

Animal and Food Genomics Group

A genomic-based approach to redefine herd book information in two local cattle breeds

Giuseppina Schiavo¹, Samuele Bovo¹, Francesca Bertolini¹, Anisa Ribani¹, Valeria Taurisano¹, Stefania Dall'Olio¹, Massimo Bonacini², Luca Fontanesi¹

¹Department of Agricultural and Food Sciences
Division of Animal Sciences, University of Bologna, Bologna Italy
²Associazione Nazionale Allevatori Bovini di Razza Reggiana
(ANABORARE), Italy
giuseppina.schiavo2@unibo.it