

Feasibility of near-infrared spectroscopy to predict dry matter digestibility in broilers

O. Tej¹, E. Albanell¹, I. Kaikat², J.F. Pérez², C.L. Manuelian¹

¹G2R and ²SNiBA; Dept. Animal and Food Sci., UAB, Spain

Introduction

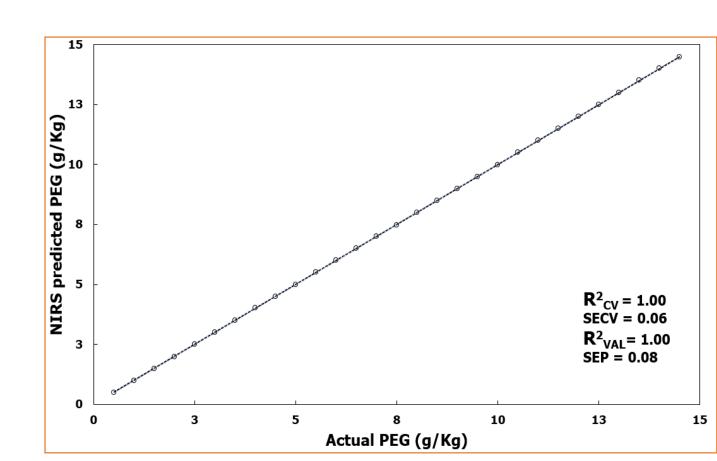
Session 17

Determining feed digestibility is crucial for optimizing broiler nutrition. Inert markers play a key role in estimating feed digestibility, but their determination by wet chemistry limits their applicability

The **aim** was to **assess** the potential of near-infrared spectroscopy (**NIRS**) to **predict Yb, Ti** and polyethylene glycol (**PEG**) content in broiler excreta, and dry matter digestibility (**DMD**) from these values

Material & Methods

- Animals: 576 male Ross 308 strain chicks
- Digestibility markers: TiO₂: 2 g/kg + Yb₂O₃: 50 mg/kg + PEG: 5 g/kg
- Samples: 192 excreta samples collected from day 14 to 25


Reference method:

- Ti and Yb → 5900 ICP-OES, Agilent
- PEG \rightarrow ad-hoc NIRS model; R^2_{CAI} = 1.00; SEC = 0.06

Chemometrics:

- From 1100 to 2500 nm, every 2 nm
- Scanned in duplicate, recorded as log(1/Reflectance)
- MPLS external validation (75:25)
- Traits: Ti, Yb, DMD_{Yb}, DMD_{Ti}, DMD_{PFG}

Excreta samples for the ad-hoc PEG calibration NIRS Ø 48 mm quartz glass cup excreta NIRS Ø 48 mm quartz glass cup excreta

samples

Ad-hoc PEG calibration developed

Results

	Calibration set					Validation set				
Trait	Scatter + Math	R ² CAL	SEC	R ² CV	SECV	R ² _{VAL}	SEP	Bias	Slope	RPD
Yb	MSC (2.5.5.1)	0.87	0.001	0.74	0.001	0.67	0.001	0	0.862	2.00
Ti	SNV+D (2.4.4.1)	0.90	0.016	0.78	0.023	0.73	0.025	0	0.885	2.28
DMD_{Yb}	SNV+D (2.4.4.1)	0.89	0.960	0.75	1.43	0.68	1.56	0.019	0.863	1.93
DMD _{Ti}	MSC (2.4.4.1)	0.91	0.851	0.80	1.22	0.77	1.20	0.014	0.900	2.41

- Challenge in predicting PEG in excreta using the developed equation
- Difficulties in developing DMD prediction models based on PEG
- Efficacy of PEG NIRS models might be influenced by the composition of the diet
- Good linear regression score between DMD based on Yb and Ti ($\mathbb{R}^2 = 0.72$)
- Null linear regression score between DMD_{PFG} and DMD_{Yb} or DMD_{Ti} ($\mathbf{R}^2 < 0.02$)

Conclusions

- > First study to evaluate potential of NIRS to assess Yb, Ti, and PEG content in broilers excreta and their DMD
- > NIRS adequate as an initial screening tool for Yb and Ti content determination, and DMD based on Ti
- > PEG ad-hoc calibration models revealed excellent accuracy
- > PEG calibration might be diet-dependent, need for PEG tailored calibration models for each diet