

Adopting low carbon practices: a cost-effective strategy for French dairy Farms

Castellan Elisabeth, French Livestock Institute

Gregoire Mathilde, French Dairy Interbranch Gaudillière Nicolas, Eliance Benoist Laura, Indre Chamber of Agriculture Tattevin Frédéric, Seenovia Perez Thibault, French Chambers of Agriculture

Financed by:

Led by:

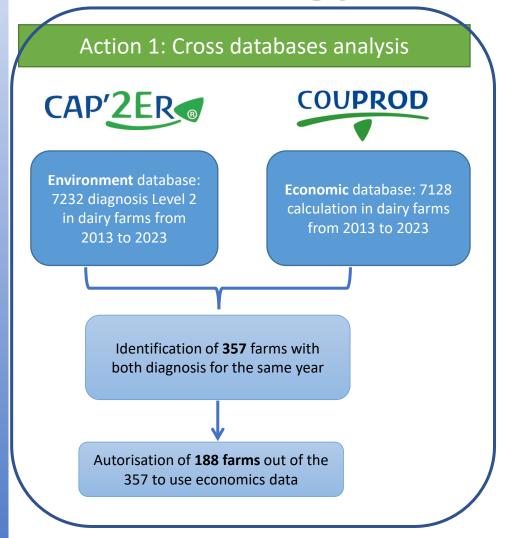
Context

Major environmental challenges for dairy farming

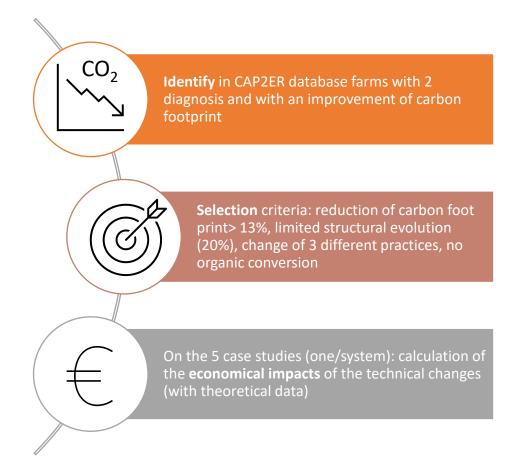
- + Slow uptake of mitigation actions
- = Needs to **motivate** the transition

Positive link between economy and low carbon practices?

= Carbon€co project


Financed by CNIEL (French dairy interbranch), lead by IDELE with the support of Eliance and Chambers of agriculture

Target farmers, advisers



EUROPA 2024. HOREN

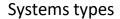
Methodology

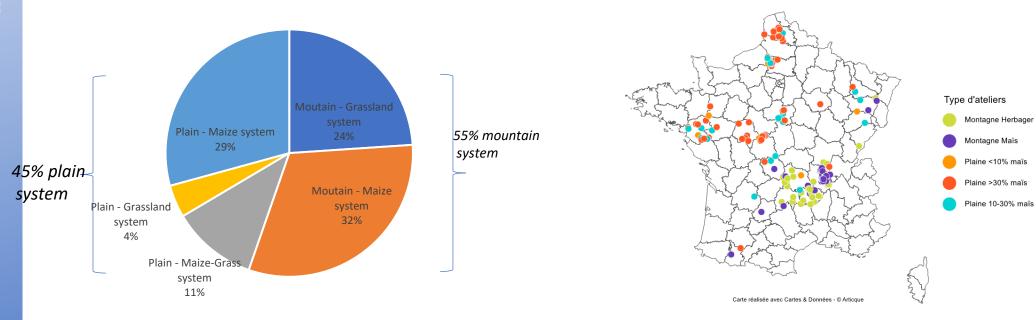
Action 2: Farms paths towards environmental performances

Methodology – Action 1

Zoom on the main indicators use in the analysis

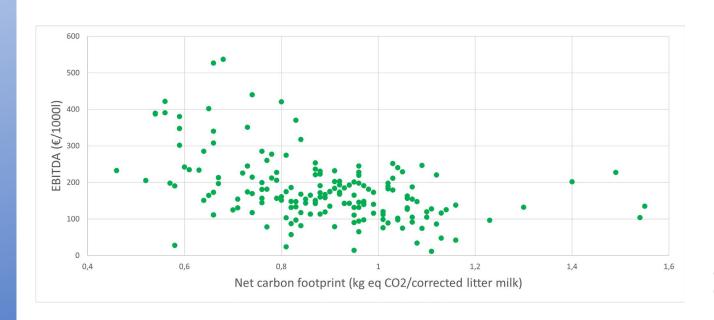
- Economics (€/1000l):
 - Cost of the feeding system: purchased feed, surface input (fertilizer, seeds), machineries cost (external, fuel, maintenance, depreciation...), land cost
 - Dairy EBITDA (Earnings Before Interest and Taxes Depreciation Amortization) = output (milk, meat, subsidies) - operational costs (feed purchased, surface input, breeding costs) – structural costs allocated to the dairy part from the COUPPROD distribution keys (mechanization, building and installation, land, management costs) before depreciation.
 - Cost of production
 - Nb SMIC (french minimum wage)/FTE (full-time equivalent)
- Environment (kg eq CO2/product unit or /ha forage)
 - **GHG emission**: sum of 3 GHG (CO₂, CH₄, N₂O)
 - **Net carbon footprint**: GHG emission carbon sequestration (standard value for permanent/temporary grassland, hedges, cover crops)
 - Number of fed people


Descriptive and statistical analysis (Spearman correlation, Student test,...)


- of the whole dataset
- by systems: with sample depending on GHG emission results

REWOPA 303 PHORENCY TO THE PROPERTY OF THE PRO

Results Description of the dataset


- Dataset not representative of dairy farming in France (geographical repartition)
 - But good representativity of the system diversity

Toth Hall

Results On the whole dataset

Example: Correlation between Dairy EBITDA and net Carbon footprint

Other correlations

Correlation	EBITDA/1000 L	Feeding system cost
Net carbon footprint (kg eq CO ₂ /corrected liter milk)	(-) ***	(-) *
GHG emission (kg eq CO ₂ /corrected liter milk)		(+) ***
GHG emission (kg eq CO ₂ /ha forage area)	(-) ***	(-) ***
Net carbon footprint (kg eq CO ₂ /ha forage area)	(-) ***	(-) ***

Correlation analysis between economics and environment indicators (Spearman correlation: 0,001: '***'; < 0,01: '**'; < 0,05: '*', ; < 0.1: '.',

= Significant correlation between several indicators which confirm the trend between economy and environment

Results By system

= an intra system variabilty showing room for improvment within systems

Sample on GHG emissions		Moutain system (104)			Plain system (84)			
	Indicators		Quarter -	Average	Quarter +	Quarter -	Average	Quarter +
		Production (L/cow)	6 422	6 992	7 256	7 916	8 203	8 254
	Technical	Concentrate for cow (g/L)	251	231	212	225	196	179
		Mineral fertilizer (kg N/ha dairy AA)	49	38	26	78	73	46
	Environment	Net carbon footprint (kg eq CO2/I)	0,97	0,83	0,72	1,16	0,93	0,73
		GHG emission (kg eq CO2/I	1,23 ^a	1,06 ^b	0,91 ^c	1,24 ^a	1,03 ^b	0,85 ^C
	Economics	Feed system cost	344 ^a	310 ^b	299 ^b	271	246	240
		Dairy EBITDA	208 ^a	207 ^{ab}	242 ^b	113ª	143 ^{ab}	164 ^b

≠31%

Student test < 0.1 : a b

≠ 26%

≠45€/1000l

Discussion

- Link between environment and economics performances
- Results consistent with other projects:
 - Qualitative analysis of milk gross margin in Life Carbon farming (1143 farms) or an INNOVAL study (322 farms) : from 14 to 16€/1000L difference on operational cost between extreme (top 10)
 - Statistical analysis in INOSYS Farms network (1110 farms from 2009-2017): 80€/1000l difference on the feed cost system between top 10 and bottom 10 (on GHG emission)
- Results are impacted by the year (output/input price, climatic conditions...) that affect farm performances
- Need to have a broader view on the economic impact of carbon transition: risk taken by farmers, external risk (price, climatic conditions)... that can affect economical results (on going work in LIFE Carbon farming project)

Thank you for your attention

View the slideshows of our conferences at idele.fr

