

A case study on carbon neutrality of Podolian beef productions in the marginal area of Southern Italy

E. Sabia, C. Pacelli, A. Di Trana, R. Paolino, A. Coppola, A. Braghieri

Department of Agricultural, Forest, Food, and Environmental Sciences, University of Basilicata, Potenza, Italy

LOCAL BREED

Basilicata region

PODOLIAN CATTLE

Animals

- 254 Podolian cattle farms
- 20.172 head of cattle
- Representing 21.03% of the total bovine population

They achieved a high level of rusticity and adaptation to thrive in arid environments of marginal areas where other forms of agriculture are limited due to the low quality of pastures

Their extensive rearing system provides a natural environment where they are allowed to express their own proper ethogram, similar to wild species

They can graze on permanent pastures and within wooded areas

On average, the Podolian beef cattle farms have about 110 ha of woodland and about 170 ha of permanent pasture within the system.

Forests are recognized as some of the largest carbon reservoirs globally (FAO, 2020), with the capacity to sequester between 41.49 and 143.14 t of carbon per ha per year (Luyssaert et al., 2007)

Assessing the environmental impact and carbon

neutrality of Podolian farms with different productive

efficiency

Parameters	Podolian More Efficient (PME)	Podolian Less Efficient (PLE)
Cows (no.)	110	80
Bulls (no.)	2	2
Calves (no.)	50	35
Slaughtering weight (kg)	550	500
Slaughtering age (mo.)	18	18
Total area (ha)	200	220
Permanent pasture (ha)	190	170
Meadow hay (ha)	10	0
Woddland (ha)	0	50
Efficiency (kg/LW/ha/y)	138	80

Material and Method

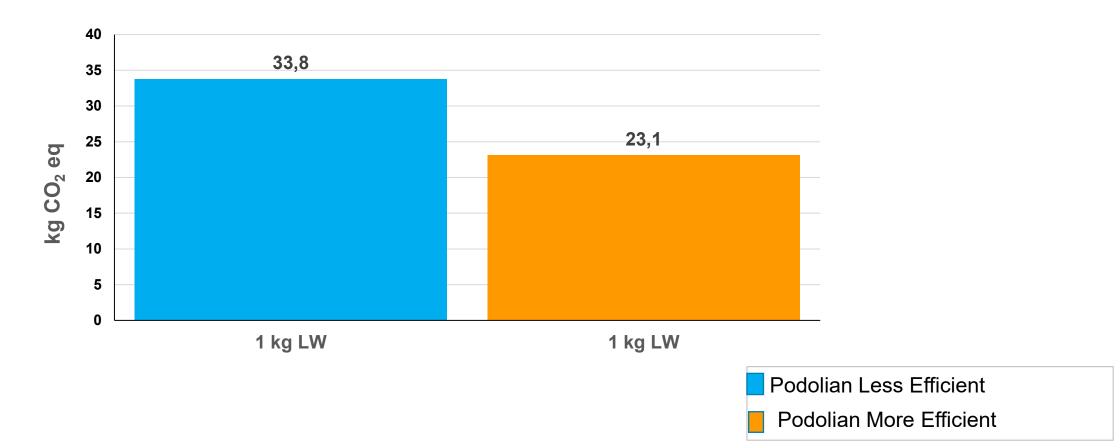
LIFE CYCLE ASSESSMENT (LCA) METHODOLOGY

- Carbon footprint (CF) expressed in kg CO₂-eq
- Functional unit (FU): 1 kg of LW
- OpenLCA 2.0.1: Agribalyse database v. 3.0.1
- ReCiPe Midpoint (H) method

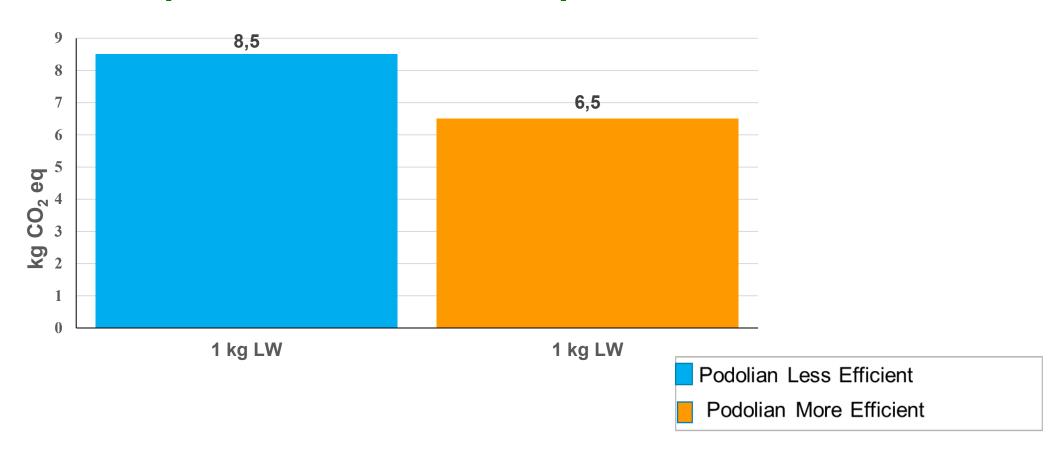
Material and Method

- Soil Carbon Sequestration (SCS) from permanent pasture estimated by the method suggested by Petersen et al. (2013)
- Sensitive analysis of woodland conservation for carbon neutrality

Material and Method



Carbon footprint of Podolian beef production



Carbon footprint of Podolian beef production with SCS

Main pullants of Carbon footprint (%)

	PME	PLE
Methane biogenic (CH ₄)	57.2	66.4
Dinitrogen monoxide (N ₂ O)	22.3	19.7
Carbon dioxide (CO ₂)	18.5	12.3

Cut off: 1%

Results

Sensitive analysis and woodland conservation

4.8 ha 4.0 ha

- ➤ In marginal contexts, the environmental impact for the production of beef per kilogram is generally higher compared to intensive livestock farming systems
- ➤ It is possible to achieve environmental performance similar to that of the most efficient intensive systems through careful examination and consideration of carbon sequestration

Conclusions

- The wooded area resource represents an existing mitigation strategy within the Podolian farming system and it needs to be managed and preserved
- > To ensure effective integration and sustainability, further research is essential for refining the identification and management of various systems within the framework of agroforestry

Conclusions

Thank You for Your attention

emilio.sabia@unibas.it

