

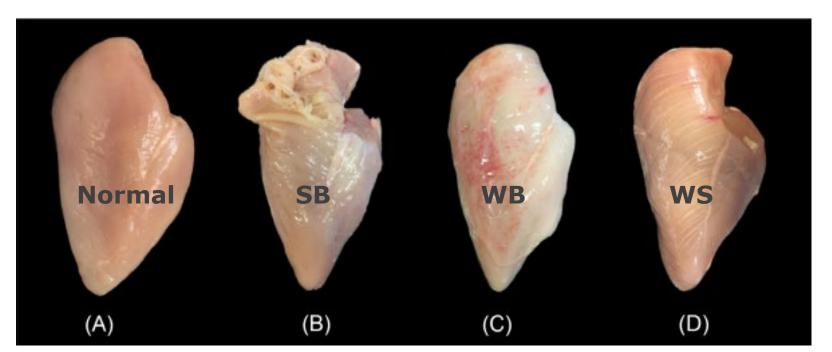
#42301

Session: 17

75th EAAP Annu<mark>al Meeting</mark>
1/5 September 2024 - Florence, Italy

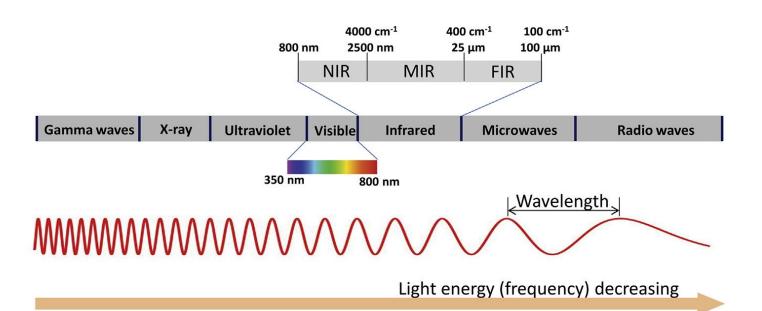
Identification of meat defects in broilers with short-wave pocket NIR spectrometer

Carmen L. Manuelian¹, S. Magro², A. Goi², J.C. Parisse³, A. Travel⁴, C. Berri⁵, M. De Marchi²


¹UAB-G2R, Spain; ²UNIPD-DAFNAE, Italy; ³LDC, France; ⁴ITAVI-URA BP1, France; ⁵INRAE-UMR BOA, France;

1. Introduction

- Novel myopathies: wooden breast (WB), white striping (WS), spaghetti breast (SB)
- Improvement growth rate, breast muscle size and yield
- Loss of myofibers and increase fibrous tissue

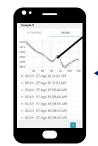

(Che et al., 2022)

1. Introduction

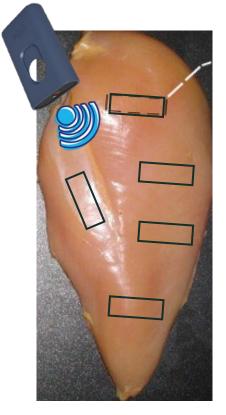
 Infrared spectroscopy: cost-effective, rapid, easy-to-use, environmentally friendly

Pocket-sized NIR: $67.7 \times 40.2 \times 18.8 \text{ mm}$; SCiOTM Every 1 nm from **740 to 1070** nm

(Pu et al., 2020)



2. Aim


Evaluate the potential of a pocket-sized NIR spectrometer to predict WB, WS and SB in broilers

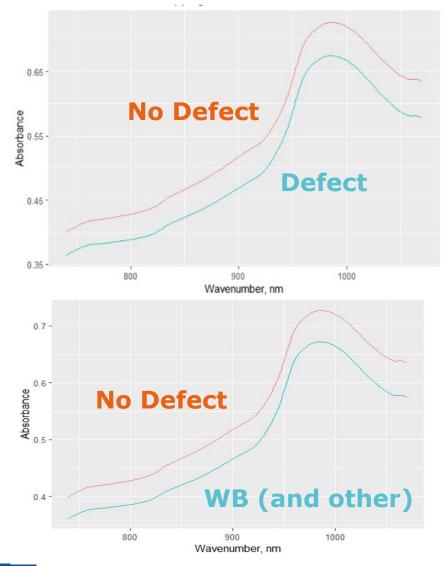
3. Material & Methods

- Ross 308 strain chicks
- 5 read per breast
- Cleaning data → 4,313 animals; 21,565 spectra
- SCiO[™] → Every 1 nm from 740 to 1070 nm
- Absorbance was recorded as log10(1/Reflectance)
- Room temperature

3. Material & Methods

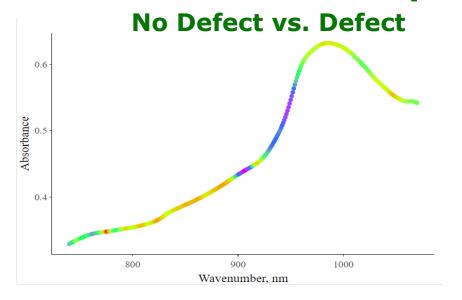
- PLS-DA package 'caret' 10-fold cv × 3 times
- Identification VIP regions (carte) + 1st derivative (mdatools)
- Dataset: 70:30
- N components \leq 10
- Spectral data: centered and scaled
- Compared:
 - No Defect vs. Defects (WS, WB, and/or SB)
 - No Defect vs. WS
 - No Defect vs. WB
 - No Defect vs. SB

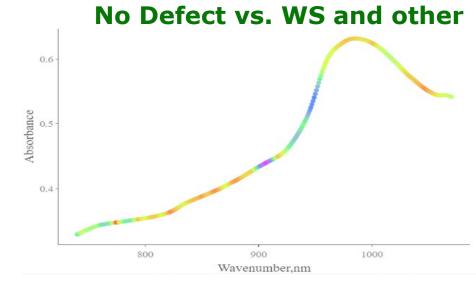
4. Results - Mahalanobis distance


	Initial (N)	After Mahalanobis (%)							
	Initial (N)	≤20	≤15	≤10	≤3				
None defect	2438	-1.23	-2.30	-5.09	-26.21				
SB (alone)	40	0.00	0.00	-5.00	-22.50				
SB+WB	17	0.00	0.00	0.00	-17.65				
SB+WS	71	0.00	0.00	-2.82	-33.80				
SB+WB+WS	86	0.00	-2.33	-6.98	-36.05				
WB (alone)	322	-0.31	-0.31	-1.24	-16.77				
WS (alone)	383	-1.31	-1.57	-3.39	-22.45				
WS+WB	956	-0.84	-2.30	-7.32	-35.36				
Total	4313	-1.02	-2.02	-5.12	-27.45				



4. Results – Average Spectra Absorbance





3. Results - VIP - Raw Spectra

25

		N. Defect	LV	Test Set			
All	N. No Defect			Sensibility	Specificity	Bal Acc	
No Defect vs. WS or/and WB	2408	1647	10	0.87	0.63	0.75	
No Defect vs. Defect (WS or/and WB or/and SB)	2408	1861	10	0.85	0.63	0.74	
Selecting 22 wavelengths No Defect vs. Defect	2408	1861	10	0.86	0.61	0.73	

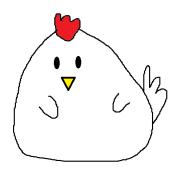
			LV	Test Set		
All	N. No Defect	N. Defect		Sensibility	Specificity	Bal Acc
No Defect vs. WS or/and WB	2408	1647	10	0.87	0.63	0.75
No Defect vs. Defect (WS or/and WB or/and SB)	2408	1861	10	0.85	0.63	0.74
Selecting 22 wavelengths No Defect vs. Defect	2408	1861	10	0.86	0.61	0.73
Spaghetti Meat						
SB (Absent vs Present)	4055	214	10	1.00	0.00	0.50
SB (No defect vs. SB and other)	2408	214	9	1.00	0.02	0.51

	N. N. B.C.	N. Dofoot		Test Set		
All	N. No Defect	N. Defect	LV	Sensibility	Specificity	Bal Acc
No Defect vs. WS or/and WB	2408	1647	10	0.87	0.63	0.75
No Defect vs. Defect (WS or/and WB or/and SB)	2408	1861	10	0.85	0.63	0.74
Selecting 22 wavelengths No Defect vs. Defect	2408	1861	10	0.86	0.61	0.73
Spaghetti Meat						
SB (Absent vs Present)	4055	214	10	1.00	0.00	0.50
SB (No defect vs. SB and other)	2408	214	9	1.00	0.02	0.51
White Striping						
WS (Absent vs. Moderate or High)	2786	1483	10	0.88	0.63	0.76
WS (Absent or Moderate vs. High)	3903	366	9	0.99	0.02	0.51
WS (No Defect vs. only WS)	2408	378	10	0.99	0.03	0.51
WS (No Defect vs. WS and other)	2408	1483	10	0.89	0.72	0.80

	N. N. D.C.	N. Defect	LV	Test Set		
All	N. No Defect			Sensibility	Specificity	Bal Acc
No Defect vs. WS or/and WB	2408	1647	10	0.87	0.63	0.75
No Defect vs. Defect (WS or/and WB or/and SB)	2408	1861	10	0.85	0.63	0.74
Selecting 22 wavelengths No Defect vs. Defect	2408	1861	10	0.86	0.61	0.73
Spaghetti Meat						
SB (Absent vs Present)	4055	214	10	1.00	0.00	0.50
SB (No defect vs. SB and other)	2408	214	9	1.00	0.02	0.51
White Striping						
WS (Absent vs. Moderate or High)	2786	1483	10	0.88	0.63	0.76
WS (Absent or Moderate vs. High)	3903	366	9	0.99	0.02	0.51
WS (No Defect vs. only WS)	2408	378	10	0.99	0.03	0.51
WS (No Defect vs. WS and other)	2408	1483	10	0.89	0.72	0.80
Wooden Breast						
WB (Absent vs. 1-2-3)	2897	1372	10	0.88	0.55	0.72
WB (0-1 vs 2-3)	3532	737	8	0.97	0.48	0.72
WB (No Defect vs. only WB)	2408	321	10	1.00	0.00	0.50
WB (No Defect vs. WB and other)	2408	1372	10	0.90	0.61	0.75

4. Results - Models' Performance - 1st Derivative

					Test Set			
	N. No Defect	N. Defect	Model	LV	Sensibility	Specificity	Balance Accuracy	
No Defect vs. Defect (WS and/or WB and/or SB)	2408	1861	Raw spectra	10	0.85	0.63	0.74	
			1st Derivate	10	0.83	0.66	0.75	
SM (No Defect vs. SB and other)	2408	214	Raw spectra	9	1	0.02	0.51	
			1st Derivate	9	1	0.02	0.51	
WS (No Defect vs. WS and other)	2408	1483	Raw spectra	10	0.89	0.72	0.80	
			1st Derivate	10	0.88	0.73	0.80	
WB (No Defect vs. WB and other)	2408	1372	Raw spectra	10	0.90	0.61	0.75	
			1st Derivate	10	0.89	0.62	0.75	



5. Conclusions

- Meat defects reduce the absorbance of the samples
- 1st Derivative and Wavelength selection did not improve the models
- Raw spectra can be used to build the models

- Highest Balanced Accuracy: WS (0.80) > WB (0.75) > Any Defect (0.74)
- All models high sensitivity
- Specificity was moderate to low
- NIR could be used to identify samples without defects

75th EAAP Annual Meeting 1/5 September 2024 - Florence, Italy

... Thank you for your attention

Any questions?

Project Coordinator: Bruno Martin - INRAE

E-mail: <u>bruno.martin@inrae.fr</u>

Communication Officer: Dina Lopes - CONSULAI

E-mail: dlopes@consulai.com

www.intaqt.eu

Acknowledgements: CLM is a post-doctoral researcher María Zambrano from the Ministerio de Universidades of Spain and the EU-Next Generation funds

