Longitudinal retrospective study of intake recovery and growth in unweaned dairy beef calves subjected to fasting, transport, and entire commercialization at farm arrival.

S. Marti¹, L. Pisoni¹, M. Blanch², A. M. Bassols³, Y. Saco³, J. Pujols⁴, and M. Devant¹

¹IRTA-Ruminant Production, ²Lucta S.A., Innovation Division; ³UAB-Faculty of Veterinary Science, Department of Biochemistry and Molecular Biology; ⁴IRTA-CReSA; Barcelona, Spain.

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Simulation of feed restriction and fasting: Effects on animal recovery

and gastrointestinal permeability in unweaned Angus-Holstein calves

Department of Ruminant Production, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, 08140 Caldes de Montbui,

DAIRY BEEF PRODUCTION: HOT TOPIC WORLDWIDE

Invited review: Beef-on-dairy—The generation of crossbred beef x dairy cattle

J. Dairy Sci. 105:2572-2586

https://doi.org/10.3168/jds.2021-20878

L. Pisoni, 10 M. Devant, 1*0 M. Blanch, 20 J. J. Pastor, 20 and S. Marti 1*0

Strategies for Feeding Unweaned Dairy Beef Cattle to

²Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Barcelona, Spain

Transport of Young Veal Calves: Effects of Pre-transport Diet, Transport Duration and Type of Vehicle on Health, Behavior, Use of Medicines, and Slaughter Characteristics

Francesca Marcato 1.2*, Henry van den Brand 1, Bas Kemp 1, Bas Engel 3, Maaike Wolthuis-Fillerup² and Kees van Reenen

Factors Affecting the Welfare of Unweaned Dairy Calves Destined for Early Slaughter and Abattoir Animal-Based Indicators Reflecting

Laura A. Bovle and John F. Mee*

Their Welfare On-Farm

J. Dairy Sci. TBC https://doi.org/10.3168/jds.2024-25011

© TBC, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association® This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A randomized controlled trial evaluating the effect of providing a rest period during long-distance transportation of surplus dairy calves: Part I. Impact on health, growth, and activity.

H. M. Goetz¹ o and D. L. Renaud¹* o Department of Population Medicine, University of Guelph, Guelph, ON, Canada

Agricultural Systems 186 (2021) 102936

Contents lists available at ScienceDirect

Agricultural Systems

journal homepage: www.elsevier.com/locate/ags

Reducing greenhouse gas emissions of New Zealand beef through better integration of dairy and beef production

Benjamin van Selm^{a,*}, Imke J.M. de Boer^a, Stewart F. Ledgard^b, Corina E. van Middelaar^a ⁸ Animal Production Systems group, Wageningen University & Research, P.O. Bax 338, 6700, AH, Wageningen, the Netherlands ⁵ Farm Systems & Environment group, AgResearch, Private Bag 3123, Hamilton, New Zealand

Maria Devant * and Sonia Marti

Ruminant Production, IRTA, Torre Marimon, 08140 Caldes de Montbui, Spain * Correspondence: maria.devant@irta.cat; Tel.: +34-934674040

Improve Their Health

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Livestock haulers' views about dairy cattle transport in Atlantic Canada

© 2023. The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.

Jillian Hendricks, ¹ © Steven Roche, ² © Kathryn L. Proudfoot, ³ © and Marina A. G. von Keyserlingk ¹* © ¹Animal Welfare Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, V6T 126, Canada ACER Consulting Inc., Guelph, ON, N1G 5L3, Canada ³Sir James Dunn Animal Welfare Centre, 424S Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, C1A 4P3, Canada

Translational Animal Science, 2022, 6, 1-21 https://doi.org/10.1093/tas/txac025 Advance access publication 9 February 2022

Board Invited Review: Crossbreeding beef x dairy cattle for the modern beef production system

Bailey L. Basiel and Tara L. Felix¹

Department of Animal Science, Pennsylvania State University, University Park, PA 16802, USA ¹Corresponding author: tfelix@psu.edu

J. Dairy Sci. 106:2800-2818

https://doi.org/10.3168/jds.2022-22367

© 2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

J. Dairy Sci. 106:3548-3558 https://doi.org/10.3168/jds.2022-22752

A randomized controlled trial investigating the effect of transport duration and age at transport on surplus dairy calves: Part II. Impact on hematological variables

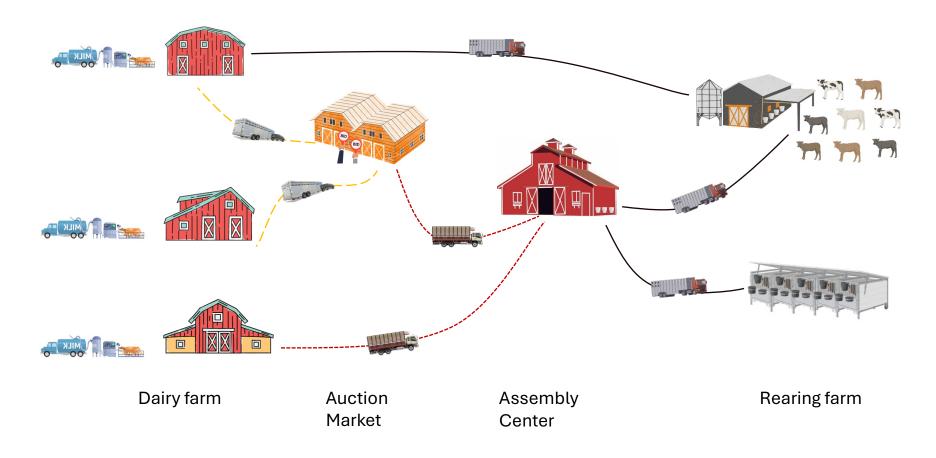
H. M. Goetz, K. C. Creutzinger, D. F. Kelton, J. H. C. Costa, C. B. Winder, D. E. Gomez, and D. L. Renaud

¹Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada

²Department of Animal and Food Science, University of Wisconsin-River Falls, 54022

³Department of Animal and Food Sciences, University of Kentucky, Lexington 40506

⁴Department of Clinical Studies, University of Guelph, Guelph, ON N1G 2W1, Canada



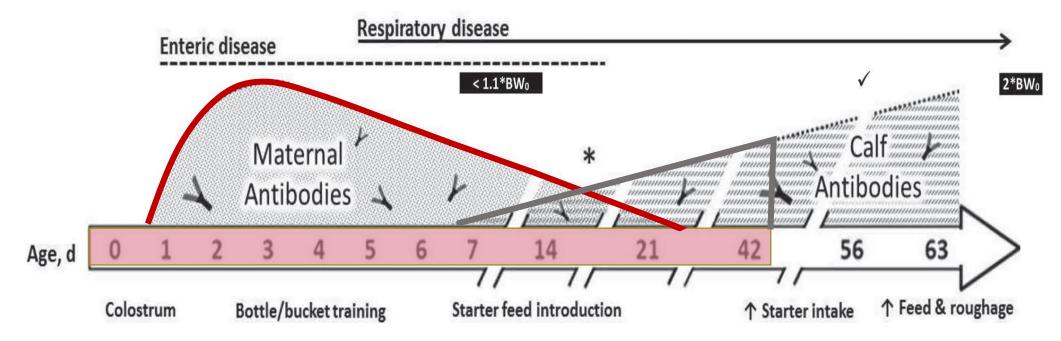
FROM ORIGIN FARM TO THE REARING FARM

FACTORS AND EFFECTS

Low intake of colostrum
Delayed colostrum intake
Low quality colostrum
Low milk replacer intake
Restriction of water access
Lack of solid intake
Lack of vaccinations

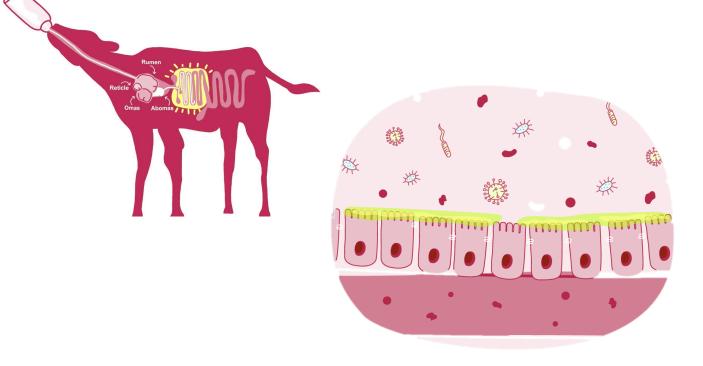
Mixing origins
Restriction of milk replacer
Lack of solid feed
Low hygiene measures

Mixing origins
 Fasting
 Transport conditions
 Environmental conditions



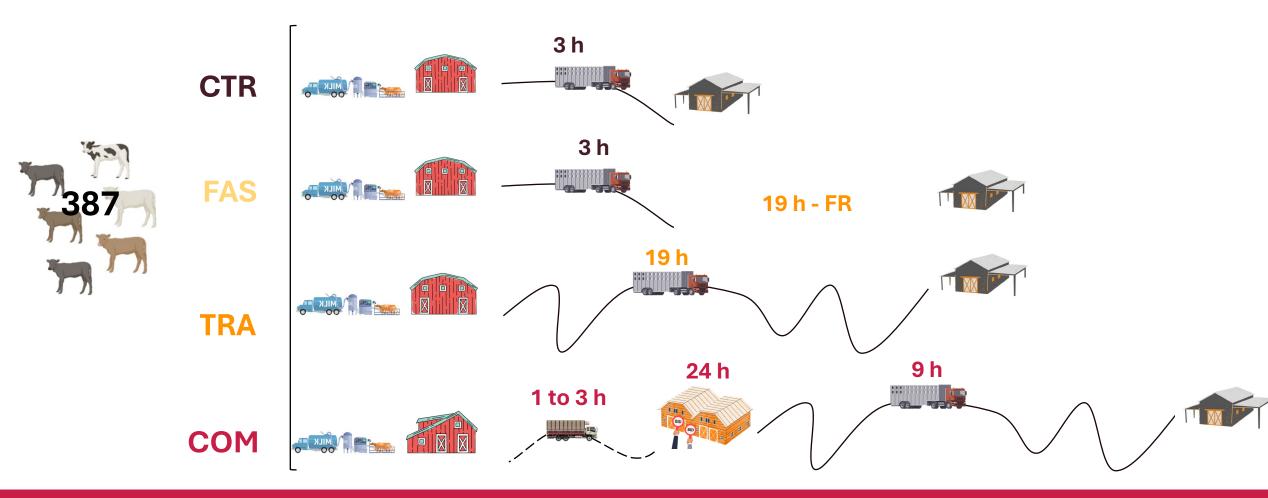
Stress
Reduced intake
Impair immune function
Impair gut functionality
Inflammation
Changes in physiology
Muscular damage
Changes in behavior
Morbidity
Antimicrobial use
Mortality

Abdallah et al., 2024; Bajus et al., 2024; Cheng et al., 2024; Goetz and Renaud, 2024; Marcato et al., 2020; Maggard et al., 2024; Marcato et al., 2022; Pisoni et al., 2023; Pisoni et al., 2023b; Renaud et al. 2020; Wilson et al. 2020.


CRITICAL FOR RECOVERY

Hulbert and Moisá, 2016

CRITICAL FOR RECOVERY

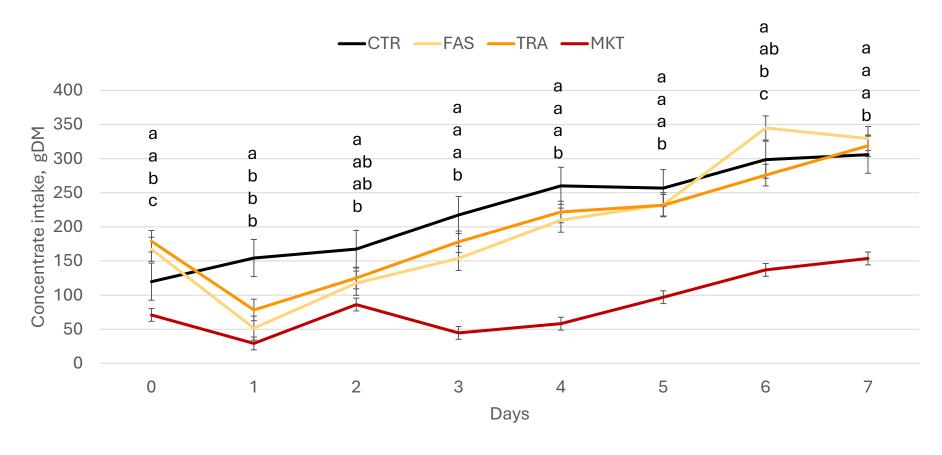

COMMERCIALITZATION OF UNWEANED CALVES: OBJECTIVE

The aim of this study was to evaluate the impact of transport or overall commercialization (marketing and transport) on intake recovery and growth at farm arrival.

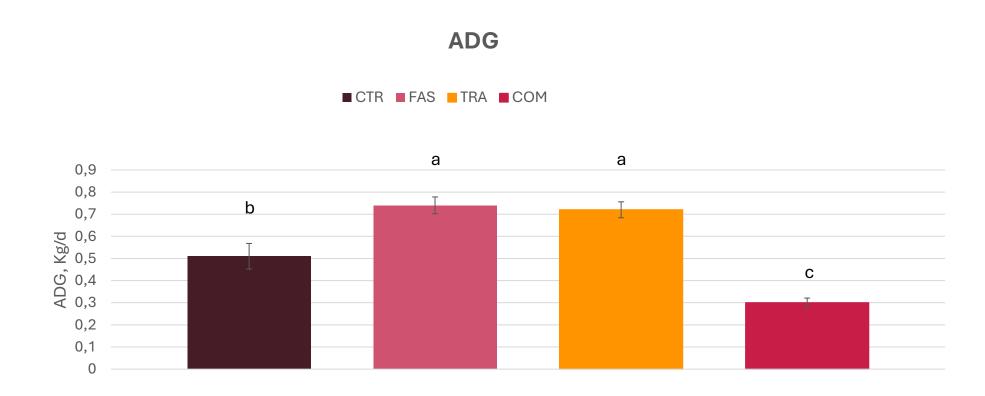
Also evaluate biomarkers of energy balance and gastrointestinal tract functionality.

MATERIAL AND METHODS

COMMERCIALITZATION OF UNWEANED CALVES:MATERIAL AND METHODS

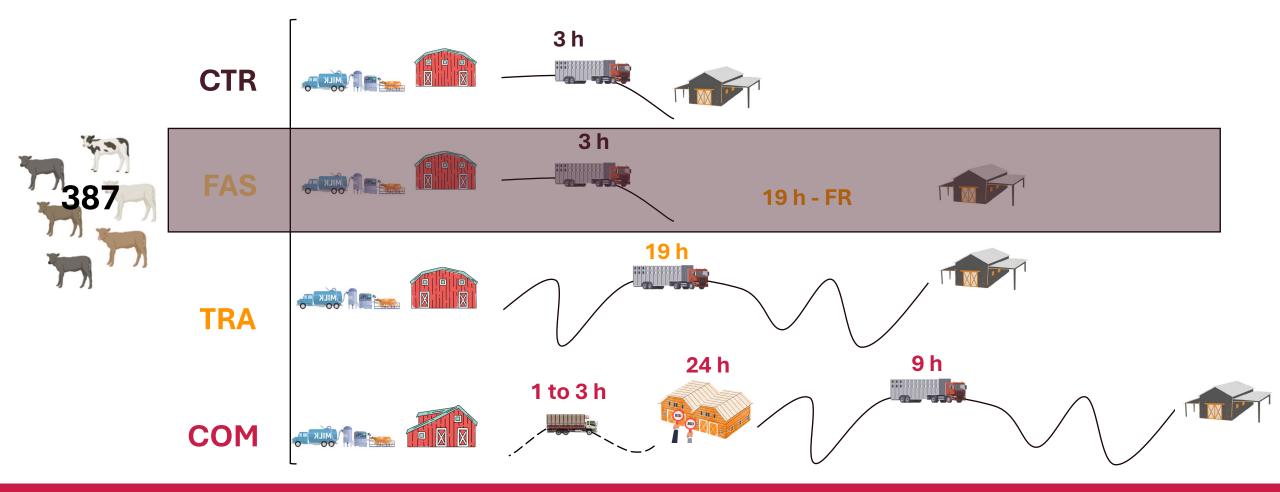

COMMERCIALITZATION OF UNWEANED CALVES: MATERIAL AND METHODS

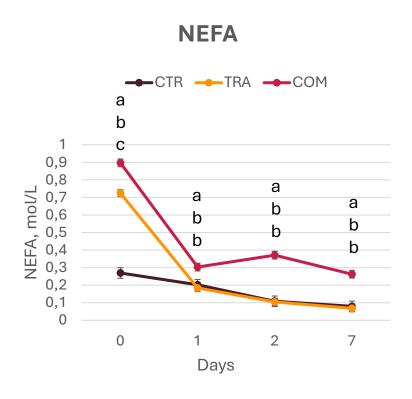
- Concentrate intake, milk refusals, and straw intake were recorded daily
- Body weight was recorded on arrival, 24 h, 48 h, and 7 days after arrival
- Blood samples were collected on arrival, 24 h, 48 h, and 7 days after arrival for
 - Markers of energy balance: NEFA, BHB and glucose concentration
 - Markers of gastrointestinal functionality:
 - Intestinal Permeability: Test with Cr-EDTA
 - Enterocyte Mass: Citrulline concentration
- Body weight, concentrate intake, and BHB, NEFA, glucose, Cr-EDTA and citrulline concentration were analyzed with mixed models with repeated measures with commercialization type, time and its interaction as fixed effects and BW at arrival as covariate. Average daily gain was analyzed as described above without repeated measures. Study and pen were considered random effects.

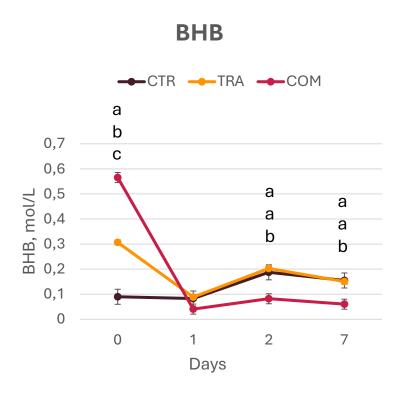


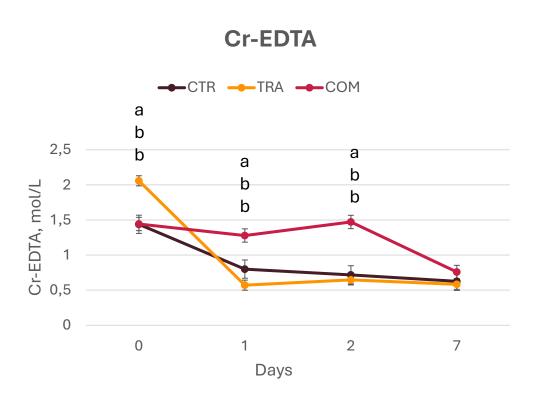
RESULTS

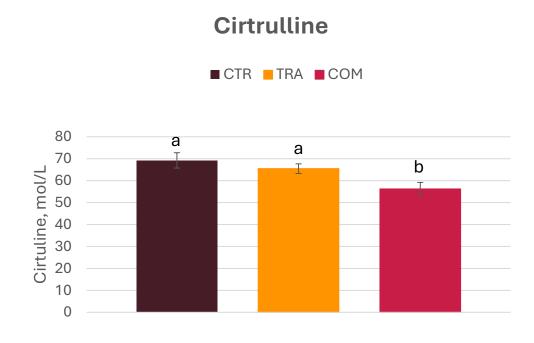
CONCENTRATE INTAKE






MATERIAL AND METHODS




RESULTS

COMMERCIALITZATION OF UNWEANED CALVES: CONCLUSIONS

The entire commercialization process, marketing and transportation, of unweaned dairy beef calves impairs intake recovery and growth, and these results are aligned with negative energy balance and comprised gastrointestinal functionality at farm arrival.

ACKNOWLEDGEMENTS:

- The 19 h transported calves (TRA) had a peak of concentrate intake at arrival but their concentrate intake 24 h after drastically drop probably by consuming high amounts of concentrate when their gastrointestinal tract is compromised by long fasting hours. It produces a slow recovery of concentrate intake during the first week after arrival.
- Calves that were marketed and transported (COM) did not eat concentrate during the
 first 3 days after arrival, and their concentrate intake was not recovered after a week
 at the rearing farm due to the damage of the intestinal tract observed by greater
 concentrations of Cr-EDTA for several days and low levels of enterocyte mass.
- Although marketed and transported calves (COM) arrived at higher weights, their average daily gain during the first week was lower than long distance transported calves (TRA).

- Fat mobilization during before arrival was greater for the marketed and transported calves (COM) compared with the 19 h transported calves (TRA) even though the long distance transported calves had 10 h more of fasting during transport. This results suggest that the management during the marketing period have a big impact on energy balance.
- Instead, glucose concentration was better indicator of fasting hours.
- Intestinal functionality, especially gastrointestinal permeability, is affected by marketing and transportation. The passage of Cr-EDTA to the bloodstream is greater showing an acute effect when calves are only transported. However, a chronic effect of low gastrointestinal permeability affects calves that was also marketed.

