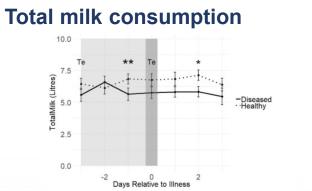
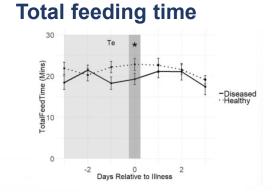
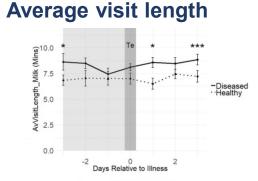


Genetic parameters for calf resilience and milk feeding traits recorded by automated milk feeding machines and their relationship with bovine respiratory disease in North American Holstein calves

Jason Graham, Masoomeh Taghipoor, and Luiz Brito




Introduction


- ✓ Dairy calves are especially vulnerable to major environmental and disease perturbations, such as thermal stress, social stress, bovine respiratory disease (BRD), and enteric diseases
- ✓ In addition to **welfare issues**, these stressors have large **economic impacts**:
 - Heat stress can lead to increased disease susceptibility (Alhussien et al., 2024; Thornton et al., 2021)
 - \$42.15 to treat each BRD case and \$444.32 in total costs for a mortality incidence due to BRD (USDA, 2014; Dubrovsky, 2020)
 - BRD (24%) and enteric diseases (56.4%) are the main causes of all mortalities in young calves (USDA, 2018; Kaura et al., 2024; Cho & Yoon, 2014)

Milk Consumption and Feeding Behavior

✓ Milk consumption and feeding behaviors are **predictors of diseases** in preweaning dairy calves (Conboy et al., 2022; Duthie et al., 2021; Swartz et al., 2017)

✓ Precision technologies (e.g., automated milk feeders) generate longitudinally recorded datasets on individual calves → opportunity to derive novel traits

Longitudinal Data: Resilience Indicators

J. Dairy Sci. 104:616–627 https://doi.org/10.3168/jds.2020-18525

© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Between-herd variation in resilience and relations to herd performance

M. Poppe,* ® H. A. Mulder, ® C. Kamphuis, ® and R. F. Veerkamp ® Wageningen University & Research, Animal Breeding and Genomics, PO Box 338, 6700 AH Wageningen, the Netherlands

Validation of resilience indicators by estimating genetic correlations among daughter groups and with yield responses to a heat wave and disturbances at herd level

M. Poppe, * © H. A. Mulder, © and R. F. Veerkamp © Wageningen University & Research, Animal Breeding and Genomics, PO Box 338, 6700 AH Wageningen, the Netherlands

Genomic-based genetic parameters for resilience across lactations in North American Holstein cattle based on variability in daily milk yield records

Shi-Yi Chen,^{1,2} Jacquelyn P. Boerman,¹ Leonardo S. Gloria,¹ Victor B. Pedrosa,¹ Jarrod Doucette,³ And Luiz F. Brito¹* D

Genetic parameters for novel climatic resilience indicators derived from automatically-recorded vaginal temperature in lactating sows under heat stress conditions

Hui Wen¹, Jay S. Johnson², Leonardo S. Gloria¹, Andre C. Araujo¹, Jacob M. Maskal¹, Sharlene Olivette Hartman¹, Felipe E. de Carvalho¹, Artur Oliveira Rocha¹, Yijian Huang³, Francesco Tiezzi^{4,5}, Christian Maltecca⁴, Allan P. Schinckel¹ and Luiz F. Brito^{1*}

Exploring milk loss and variability during environmental perturbations across lactation stages as resilience indicators in Holstein cattle

Ao Wang¹, Luiz F. Brito², Hailiang Zhang¹, Rui Shi¹, Lei Zhu¹, Dengke Liu³, Gang Guo⁴ and Yachun Wang^{1*}

Opportunities to Improve Resilience in Animal Breeding Programs

Tom V. L. Berghof*, Marieke Poppe and Han A. Mulder

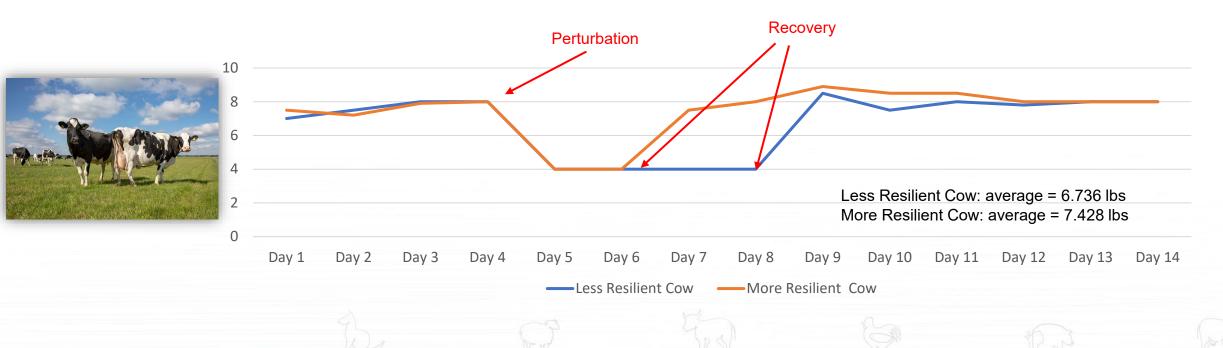
Wageningen University & Research Animal Breeding and Genomics, Wageningen, Netherlands

Investigating the relationship between fluctuations in daily milk yield as resilience indicators and health traits in Holstein cattle

Ao Wang,¹ Guosheng Su,² Luiz F. Brito,³ Hailiang Zhang,¹ Rui Shi,¹ Dengke Liu,⁴ Gang Guo,⁵ and Yachun Wang¹* Dengke Liu,⁴ Gang Guo,⁵

Genetic analysis of resilience indicators based on milk yield records in different lactations and at different lactation stages

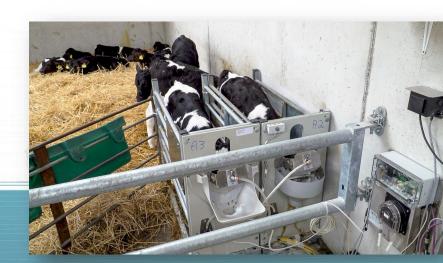
M. Poppe, 1* G. Bonekamp, 1 M. L. van Pelt, 2 and H. A. Mulder 1 Wageningen University & Research, Animal Breeding and Genomics, PO Box 338, 6700 AH Wageningen, the Netherlands 2 Cooperation CRV, Animal Evaluation Unit, PO Box 454, 6800 AL Arnhem, the Netherlands


Exploring Phenotypes for Disease Resilience in Pigs Using Complete Blood Count Data From a Natural Disease Challenge Model

Xuechun Bai¹, Austin M. Putz², Zhiquan Wang¹, Frédéric Fortin³, John C. S. Harding⁴, Michael K. Dyck¹, Jack C. M. Dekkers², Catherine J. Field¹, Graham S. Plastow¹* and PigGen Canada†

Defining Resilience

✓ Definition: "The individual's capacity to be minimally affected by environmental disturbances or to rapidly bounce back to the previously undisturbed states" (Colditz and Hine, 2016)

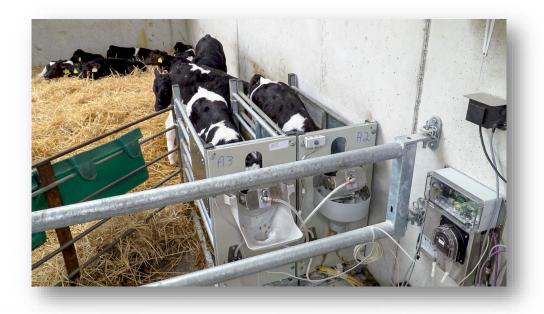


Objectives

- ✓ Derive novel traits related to calf **feeding behavior and health** based on data from AMF and BRD treatments in North American Holstein calves
- ✓ Detect perturbations in the individual milk consumption data and derive metrics to characterize perception of perturbations by calves
- ✓ Estimate variance components and genetic parameters for the derived calf feeding behavior, calf resilience traits, pre-weaning survival, and BRD susceptibility

Datasets

- √ 14,749 female Holstein calves with phenotypic records (AMF data)
- √ > 566,156 daily observations (>5 million per-visit records)
- ✓ Records from birth to weaning (~60 days) → ~50 calves/pen
- ✓ Genomic data: 57,019 SNPs after QC
- ✓ Climatic variables and other systematic effects


Automated Milk Feeders: Valuable Data Source

Recorded variables included:

- Daily milk consumption (DMC)
- Per-visit milk consumption (PVMC)
- Daily sum of drinking duration (DSDD)
- Drinking duration per visit (DDPV)
- Daily number of rewarded visits (DNRV)
- Total number of visits per day (TNV)

Additional traits created from these variables:

- Total consumption variance (TCV)
- Duration variance (TDV)
- Feeding interval (FI)
- Drinking speed (DS)
- Pre-weaning stayability (ST)

BRD-related trait:

- Number of times a calf was treated for BRD (NTT)
- NTT was determined by counting the number of BRD incidences prior to 60 days of age

AMF-derived Traits Are Heritable

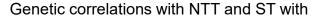
Trait^2	$\sigma_u^2~(\pm~{ m SE})$	$\sigma_{pe}^2~(\pm~{ m SE})$	$\sigma_e^2~(\pm~{ m SE})$	$\mathrm{h^2}~(\pm~\mathrm{SE})$
PVMC (L/visit) DMC (L/d) TCV (L²) DDPV (min) DSDD (min) TDV (min²) DS (L/min) DNRV TNV FI (min) NTT	0.016 ± 0.0013 0.56 ± 0.04 0.0076 ± 0.0009 0.04 ± 0.004 3.27 ± 0.18 0.14 ± 0.016 0.002 ± 0.00010 0.25 ± 0.02 1.70 ± 0.15 81.73 ± 11.85 0.04 ± 0.005	0.023 ± 0.0009 1.63 ± 0.03 0.09 ± 0.003 4.67 ± 0.11 0.0027 ± 0.00006 0.55 ± 0.013 2.78 ± 0.13 253.95 ± 12.35	$0.58 \pm 0.0008 \\ 5.89 \pm 0.01 \\ 0.029 \pm 0.00082 \\ 1.49 \pm 0.002 \\ 40.92 \pm 0.078 \\ 0.47 \pm 0.014 \\ 0.017 \pm 0.000032 \\ 7.22 \pm 0.014 \\ 29.12 \pm 0.06 \\ 9845.2 \pm 28.07 \\ 0.38 \pm 0.06$	$\begin{array}{c} 0.025 \pm 0.002 \\ 0.069 \pm 0.005 \\ 0.21 \pm 0.023 \\ 0.024 \pm 0.002 \\ 0.067 \pm 0.004 \\ 0.23 \pm 0.024 \\ 0.08 \pm 0.004 \\ 0.032 \pm 0.0021 \\ 0.051 \pm 0.004 \\ 0.008 \pm 0.0012 \\ 0.09 \pm 0.01 \end{array}$
ST (d)	0.16 ± 0.03		2.79 ± 0.05	0.054 ± 0.011

Repeatability model
Records from 0 to 60 days

$\overline{{ m Trait}^2}$	$\sigma_u^2 \; (\pm \; { m SE})$	$\sigma_{pe}^2~(\pm~{ m SE})$	$\sigma_e^2~(\pm~{ m SE})$	$h^2 (\pm SE)$
PVMC (L/visit) DMC (L/d) DDPV (min) DSDD (min) DS (L/min) DNRV (count) TNV (count) FI (min)	0.025 ± 0.002 0.48 ± 0.03 0.025 ± 0.0019 6.05 ± 0.34 0.003 ± 0.002 0.046 ± 0.004 0.88 ± 0.055 169.5 ± 19.71	$egin{array}{l} 0.032 \pm 0.001 \ 0.88 \pm 0.02 \ 0.03 \pm 0.0012 \ 8.64 \pm 0.20 \ 0.004 \pm 0.00008 \ 0.11 \pm 0.003 \ 1.45 \pm 0.038 \ 355.22 \pm 17.54 \end{array}$	0.58 ± 0.0009 4.02 ± 0.01 0.57 ± 0.001 43.15 ± 0.11 0.013 ± 0.00004 2.44 ± 0.006 16.60 ± 0.043 7000 ± 27.43	0.04 ± 0.003 0.09 ± 0.009 0.04 ± 0.003 0.10 ± 0.005 0.15 ± 0.007 0.02 ± 0.0015 0.05 ± 0.003 0.023 ± 0.0026

Repeatability model
Records from 0 to 32 days

AMF-derived Traits Are Heritable


		Additive genetic variance			Heritability
Trait^2	Type^3	Mean	Minimum to maximum	Mean	Minimum to maximum
PVMC (L/visit)	QFull	0.03	0.013-0.05	0.05	0.02-0.07
<i>\\</i>	m LFull	0.04	$0.01 - \!\! 0.12$	0.06	0.02 – 0.16
	Q32	0.034	0.015 – 0.072	0.05	0.025 – 0.10
	L32	0.032	0.018 – 0.069	0.05	0.03 – 0.10
	QHR (4)	0.04	0.009 – 0.07	0.07	0.02 – 0.11
DMC (L/d)	QFull `´	1.98	0.12 – 3.81	0.27	0.031 – 0.44
\	LFull	2.27	0.64 – 6.99	0.19	0.08 – 0.40
	Q32	1.95	0.32 – 5.39	0.25	0.07 – 0.48
	L32	2.08	0.39 – 6.80	0.24	0.07 – 0.54
	QHR(4)	5.15	0.12 – 11.03	0.46	0.05 – 0.68

Random regression models

Linear and quadratic Legendre orthogonal polynomials

Homogeneous and heterogeneous residual variances

Records from 0-32 days and 0-60 days (Full)

c 1.		
feeding	hahavio	r traite
iccurry	DCHavio	เนลเเอ

	NTT	ST
PVMC	0.11 ± 0.03	0.20 ± 0.10
DMC	-0.59 <u>+</u> 0.02	0.47 <u>+</u> 0.07
TCV	-0.11 ± 0.084	0.14 ± 0.13
DDPV	0.46 ± 0.08	-0.60 ± 0.12
DSDD	0.05 ± 0.06	0.22 ± 0.07
TDV	0.24 ± 0.080	0.23 ± 0.055
DS	-0.44 ± 0.05	0.31 <u>+</u> 0.08
DNRV	-0.34 ± 0.05	0.29 ± 0.08
TNV	-0.36 ± 0.05	-0.014 ± 0.08
FI	0.27 <u>+</u> 0.11	0.18 <u>+</u> 0.11
NTT	_	-0.16 ± 0.16

J. Dairy Sci. 107:2175–2193 https://doi.org/10.3168/jds.2023-23794

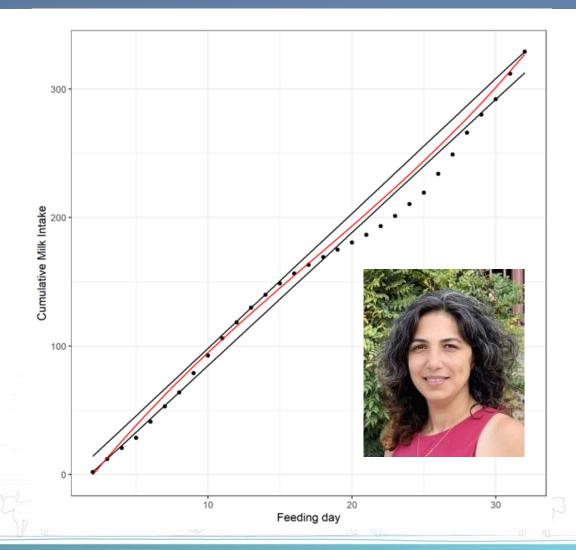
© 2024, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Genetic parameters for calf feeding traits derived from automated milk feeding machines and number of bovine respiratory disease treatments in North American Holstein calves

Jason R. Graham, ¹ Maria E. Montes, ¹ Victor B. Pedrosa, ¹ Jarrod Doucette, ² Masoomeh Taghipoor, ³ André C. Araujo, ¹ Leonardo S. Gloria, ¹ Jacquelyn P. Boerman, ¹ André C. Araujo, ¹ Leonardo S. Gloria, ¹ Jacquelyn P. Boerman, ¹ And Luiz F. Brito André C. Araujo, ¹ Leonardo S. Gloria, ¹ Jacquelyn P. Boerman, ¹ And Luiz F. Brito André C. Araujo, ¹ Agriculture Information Technology (AgIT), Purdue University, West Lafayette, IN 47907

³Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120, Palaiseau, France

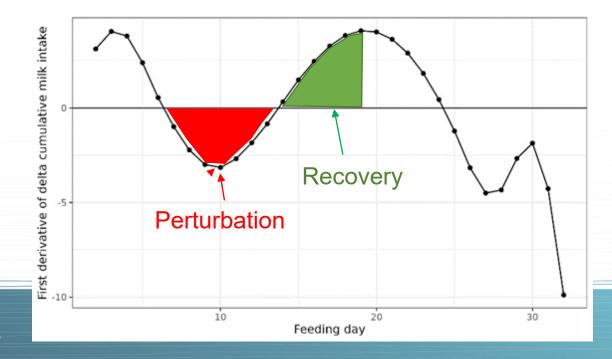
PURDUE | ANIMAL SCIENCES


Deriving Calf Resilience

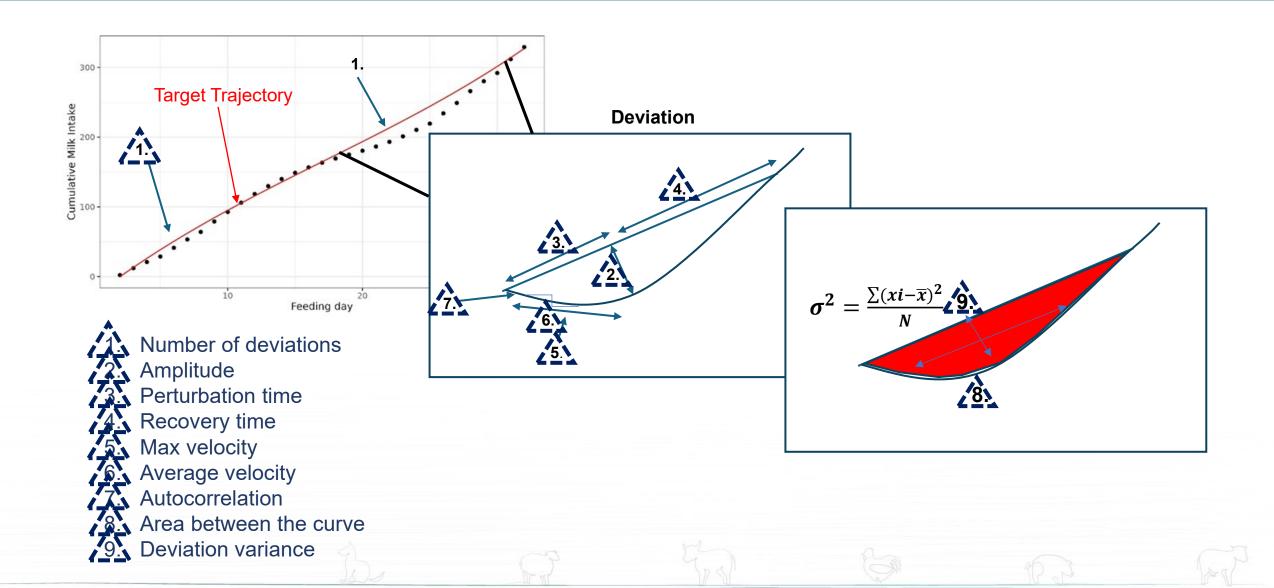
Develop cumulative milk intake:

- AMF devices programmed for specific milk entitlement
- Step-down program improved rumen development
- Data reduction to 32-d due to entitlement program
- Missing information estimated using B-spline function
- Cumulative milk intake was calculated

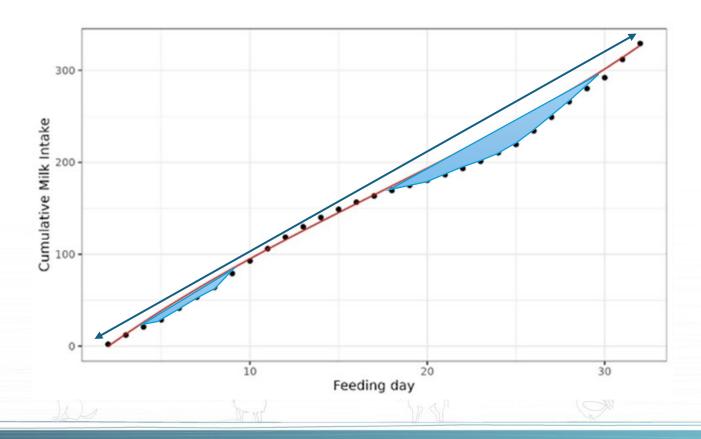
Non-linear Model Testing:


- Quantile Regression envelope calculated
- Smoothing function applied to extracted data
- Observed Target = ∆CMI

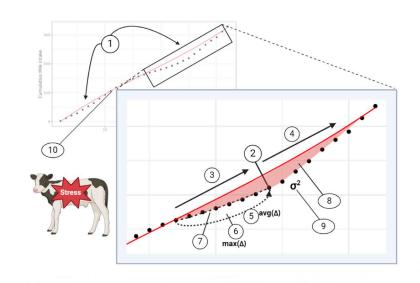
Deriving Calf Resilience


Estimation of perturbations (continued):

- 1st derivative of △CMI calculated to estimate transition periods
- Perturbation phase identified by negative 1st derivative
- Recovery phase marked by positive 1st derivative
- Transition periods guide assessment of original function for resilience phenotypes



Recovery Ratio Calculation


Recovery ratio (Rec_{ratio}) calculated as CMI/Target CMI

Descriptive Statistics of Calf Resilience Indicators

Trait (unit)	Mean	SD	Min	Max
Amplitude (L)	5.63	3.70	0	28.07
Perturbation time (d)	2.92	1.82	0	12.00
Recovery time (d)	3.23	2.26	0	15.00
Maximum velocity (L/d)	1.43	0.98	0	9.20
Average velocity (L/d)	0.98	0.67	0	6.35
ABC	28.94	33.52	0	294.11
Deviation variance (L ²)	3.32	4.68	0	75.63
Deviation log-variance $(ln(L^2))$	0.47	1.43	-12.54	4.33
Deviation auto-correlation	0.005	0.39	-0.85	0.87
Recovery ratio (%)	0.96	0.024	0.72	1.00
Deviation number	1.23	1.11	0.00	4.00
Number of times treated	0.70	0.71	0.00	2.00
Average milk consumption	9.44	1.55	3.81	16.67

Genetic Parameters: Calf Resilience Traits

Trait	h ²		
Amplitude (L)	0.047 (0.032, 0.064)		
Perturbation time (d)	0.011 (0.0056, 0.016)		
Recovery time (d)	0.025 (0.016, 0.035)		
Maximum velocity (L/d)	0.039 (0.024, 0.053)		
Average velocity (L/d)	0.038 (0.022, 0.050)		
ABC	0.039 (0.027, 0.054)		
Recovery ratio	0.053 (0.036, 0.072)		
Deviation variance	0.049 (0.32, 0.068)		
Deviation log-variance	0.027 (0.016, 0.044)		
Deviation auto-correlation	0.010 (0.0042, 0.017)		
Deviation number	0.023 (0.0094, 0.036)		
Average milk consumption	0.36 (0.33, 0.40)		
Number of times treated	0.16 (0.13, 0.18)		

h² estimates for resilience traits:

- Ranged from 0.01 to 0.05
- Similar to health traits in dairy cattle
- Putz et al. (2019)
 - 0.15 5% quantile
 - 0.21 root mean square error
 - differences in observation duration and postweaning stressors
- Lenoir et al. (2022):
 - Ranged from 0.03 to 0.09 for resilience traits

Genetic Parameters: Calf Resilience Traits

Moderate positive genetic correlations were found:

- Amplitude and perturbation time (0.55)
- Perturbation time and NTT (0.49)
- Negative correlation between perturbation time and average milk consumption (-0.53)

Genetic correlations between resilience and milk consumption and number of times treated for BRD traits.

Trait	Average milk consumption	Number of times treated for BRD	
Amplitude	0.569 (0.474, 0.666)	-0.181 (-0.341, -0.025)	
Perturbation time	-0.534 (-0.73, -0.342)	0.494 (0.251, 0.723)	
Recovery time	-0.18 (-0.279, -0.085)	0.102 (-0.101, 0.312)	
Maximum velocity	0.428 (0.346, 0.508)	-0.132 (-0.256, -0.015)	
Average velocity	0.554 (0.432, 0.672)	-0.279 (-0.433, -0.106)	
Area between curve	0.109 (-0.03, 0.253)	0.03 (-0.132, 0.192)	
Autocorrelation	-0.339 (-0.53, -0.139)	0.348 (0.131, 0.578)	
Deviation variance	0.198 (0.074, 0.314)	-0.015 (-0.174, 0.14)	
Ln Deviation variance	0.28 (0.138, 0.415)	-0.068 (-0.247, 0.106)	
Number of deviations	0.091 (-0.125, 0.306)	<u>-0.294 (-0.52, -0.095)</u>	
Recovery ratio	0.204 (0.063, 0.355)	0.024 (-0.14, 0.186)	

Conclusions

- ✓ Milk feeding behavior and calf resilience indicators are heritable and genetically correlated with number of BRD treatments and pre-weaning survival
- ✓ Random regression models captured more of the genetic variation than repeatability models
- ✓ Calf resilience traits derived based on **cumulative milk intake** are under genetic control but with low heritability estimates
- ✓ Daily milk consumption, NTT, and perturbation time are the most promising indicator traits for improved calf resilience.
- ✓ Drinking speed, total number of visits to the AMF, and recovery time are other key auxiliary traits for improved calf resilience

Additional Details:

ARTICLE IN PRESS—UNCORRECTED PROOF

J. Dairy Sci. 107:2175-2193 https://doi.org/10.3168/jds.2023-23794

© 2024, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Genetic parameters for calf feeding traits derived from automated milk feeding machines and number of bovine respiratory disease treatments in North American Holstein calves

Jason R. Graham, ¹ Maria E. Montes, ¹ Victor B. Pedrosa, ¹ Jarrod Doucette, ² Masoomeh Taghipoor, ³ André C. Araujo, ¹ Leonardo S. Gloria, ¹ Jacquelyn P. Boerman, ¹ and Luiz F. Brito ¹ Department of Animal Sciences, Purdue University, West Lafayette, IN 47907

²Agriculture Information Technology (AgIT), Purdue University, West Lafayette, IN 47907

³Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120, Palaiseau, France

J. Dairy Sci. TBC https://doi.org/10.3168/jds.2024-25192

© TBC, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Trait development and genetic parameters of resilience indicators based on variability in milk consumption recorded by automated milk feeders in North American Holstein calves

Jason R. Graham, ¹ • Masoomeh Taghipoor, ² Leonardo S. Gloria, ¹ • Jacquelyn P. Boerman, ¹ • Jarrod Doucette, ³ • Artur O. Rocha, ¹ • and Luiz F. Brito ¹* •

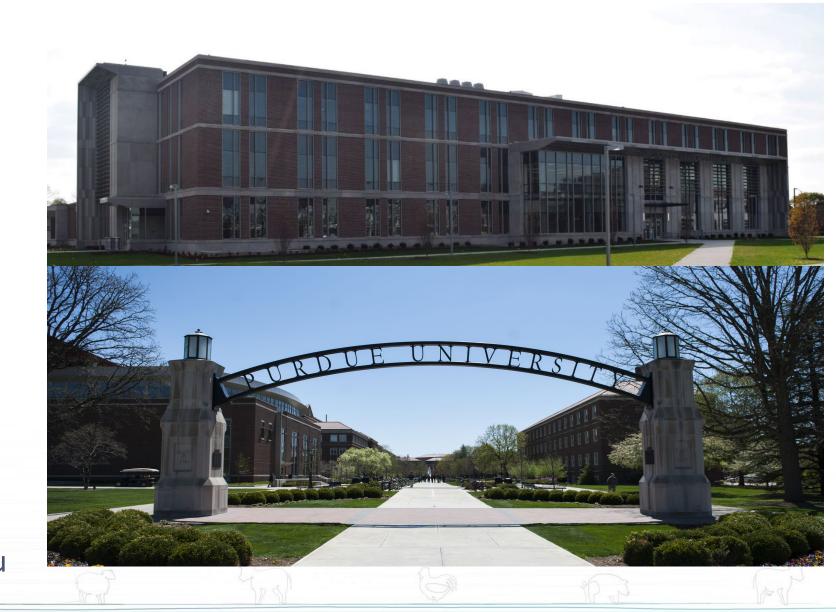
¹Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA

²Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120, Palaiseau, France

³Agriculture Information Technology (AgIT), Purdue University, West Lafayette, IN, 47907, USA

United States Department of Agriculture National Institute of Food and Agriculture

Grant #: 2022-67021-37022



Thank

You!

E-mail: britol@purdue.edu

