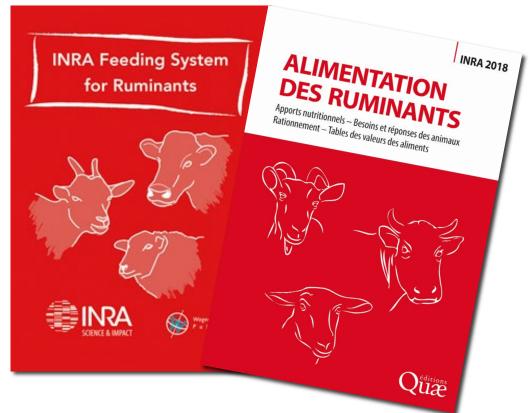
75th EAAP Congress, Florence, 1st Sep 2024

Hybrid local and global sensitivity analysis: Evaluation of dairy cow response predicted through INRA 2018 feeding system according to feed characteristics

<u>Seoyoung Jeon</u>¹, T. Senga Kiessé², S. Lemosquet³, P. Nozière^{1*}

¹UMR Herbivores, INRAE-VetAgro Sup, France


²UMR SAS, INRAE-Institut Agro, France

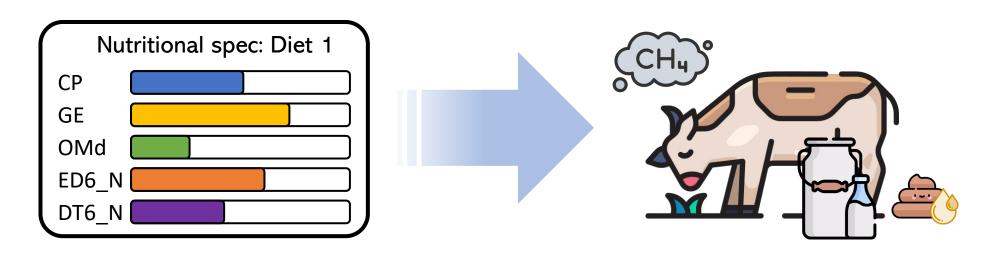
³UMR PEGASE, INRAE-Institut Agro, France

Chapter 1. INTRODUCTION

What is the sensitivity analysis?

1. Sensitivity analysis?

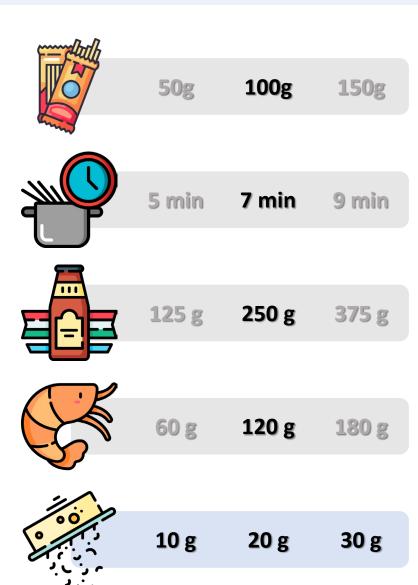
Which input variables (and how much) caused the variation in output?


2. Objectives

- Simplification: remove non-effective or redundant input variable
- *Understanding:* verify the relationship between input and output in a complex system

Local approach? Global approach?

3. Research object


How the dairy cow's performances, predicted from the INRA 2018 feeding system, react to variation in feed characteristics?

Local vs. Global sensitivity analysis

Target output: The taste of pasta

1. Local analysis (One-at-a-time)

- Change only one condition at a time (e.g. cheese)
- The remaining variables are fixed to standard values (e.g. pasta, time, sauce, shrimp)

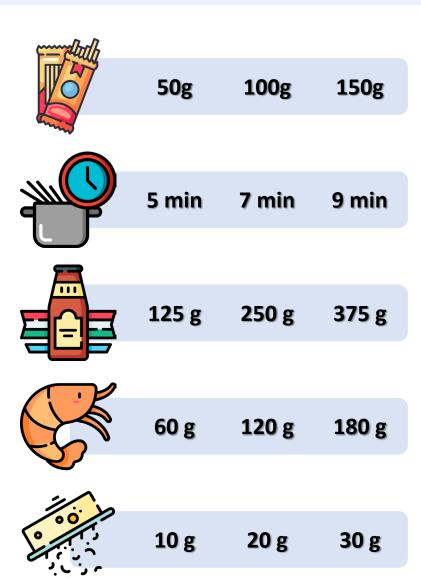
[Expecting conclusion]

 Non-linear positive relationship with cheese amount

[Strength]

- Fast and easy to analyse
- Easy to understand the impact

[Weakness]


Cannot consider interactions

01

Local vs. Global sensitivity analysis

Target output: The taste of pasta

2. Global analysis

 Change multiple conditions simultaneously

[Expecting conclusion]

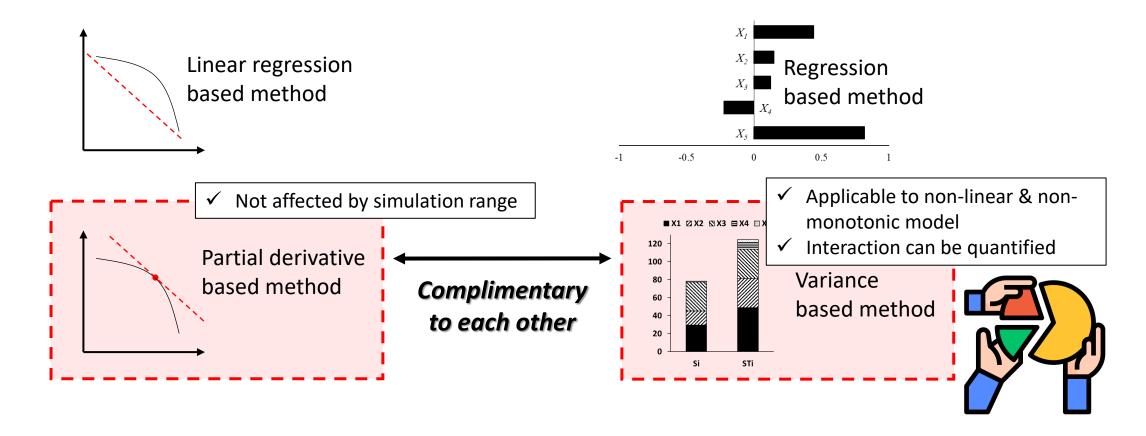
- Amount of pasta & sauce were highly interacted
- Amount of shrimp & cheese were highly interacted
- Boiling time was significant but did not interact with others

[Strength]

Can consider interactions

[Weakness]

- High performing time
- Not easy to interpret


1 Local vs. Global sensitivity analysis

1. Local analysis (= one-at-a-time method)

- Evaluate the influence one-by-one
- Strength: Fast, Easy, Intuitive
- Weakness: Limited information

2. Global analysis

- Simultaneously evaluate the influence of multiple variables
- Strength: Consider interactions
- Weakness: High computing time, Complicate

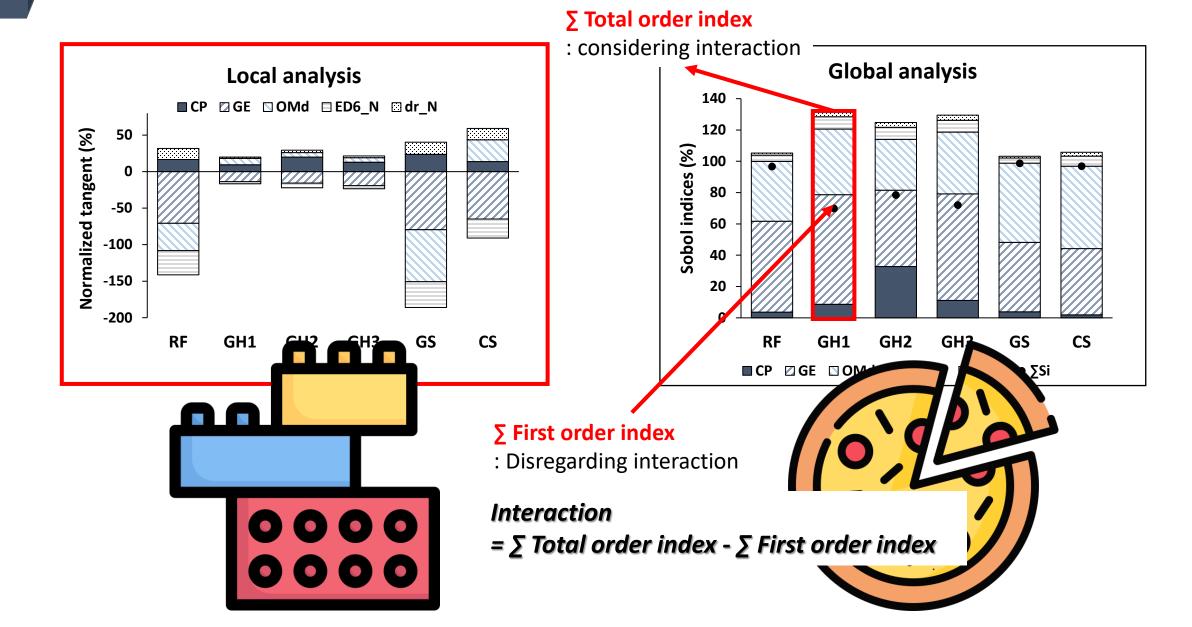
Chapter 2. MATERIALS & METHODS Simulation condition

Simulation conditions

Table 1. Diet composition (% DM) for multiparous

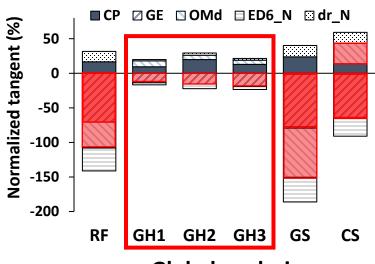
	RF	GH1	GH2	GH3*	GS	CS
Diet composition						
Fresh perennial ryegrass	72.9	-	-	-	-	-
Grass hay (1st growth)	-	54.2	-	-	-	-
Grass hay (2nd growth)	-	-	84.2	52.9	-	-
Grass silage	-	-	-	-	62.1	-
Corn silage	-	-	-	-	-	75.6
Soybean meal	3.6	-	-	-	4.2	13.6
Rapeseed meal	-	21.1	-	18.6	-	-
Barley	-	-	-	-	-	10.8
Corn	23.6	24.7	15.8	28.6	33.7	-
Nutritive values						
CP (g/kg DM)	143	150	183	150	140	141
GE (kcal/kg DM)	4339	4448	4527	4456	4481	4495
OMd (% DM)	73.9	61.3	70.2	62.6	69.8	68.3
ED6_N (% DM)	66.3	58.2	63.1	58.7	64.5	62.5
dr_N (% DM)	86.0	79.3	86.9	80.6	82.7	83.5

- 1) Animal condition
- 2nd parity multiparous in 14 wks of lactation
- 37.5 kg/d of MY and 1,121 g/d of MPY
- 608 kg of BW (BCS 2.29)
- 2) 6 common diets formulated (INRAtion®V5)
- RF: Fresh perennial ryegrass based diet
- GH1,2,3: Permanent grass hay based diets
- GS: Permanent grass silage based diet
- CS: Corn silage based diet

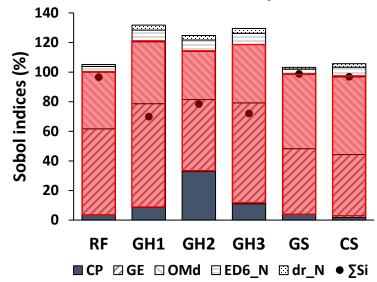

2. Simulation

- Around reference situation (±3.0 ~ ±5.5% CV)
 - Local: Latin-hypercube random sampling (N = 50)
 - Global: Quasi-random sampling (N = 10,000)

^{1.} Reference point


^{*3}kg with fixed amount

103 Local vs. Global sensitivity analysis



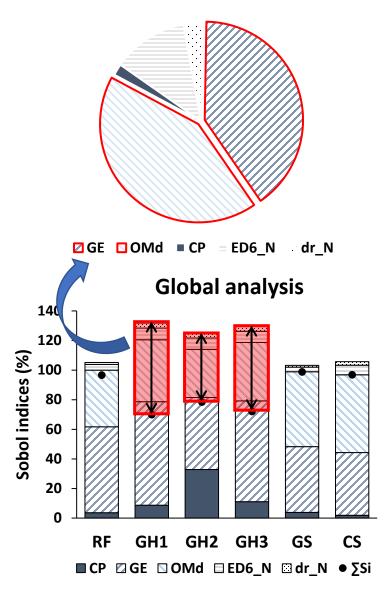
Dry matter intake

Local analysis

Global analysis

General

Energy related-variables (i.e. GE & OMd) are most important


Local Analysis

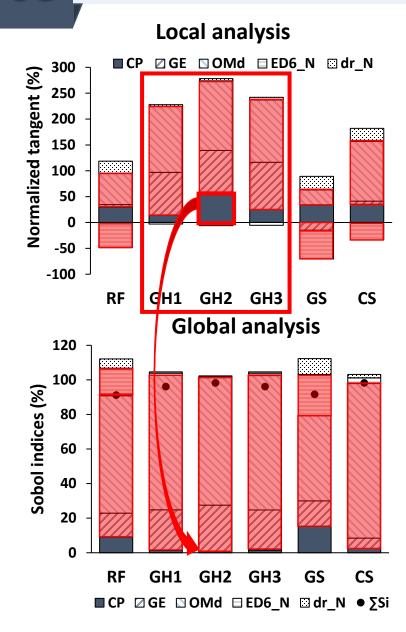
- <u>Total variability</u> of DMI
 - GH-based diets showed lower variability than non-GH based diets
- Direction of change in output for each input variable change
 - CP, dr_N: DMI increase (positive)
 - GE, ED6 N: DMI decrease (negative)

- Relative importance of input variables
 - Influence of protein-related variables were low

Dry matter intake

Interaction

General


Energy related-variables (i.e. GE & OMd) are most important

Local Analysis

- <u>Total variability</u> of DMI
 - GH-based diets showed lower variability than non-GH based diets
- Direction of change in output for each input variable change
 - CP, dr_N: DMI increase (positive)
 - GE, ED6 N: DMI decrease (negative)

- Relative importance of input variables
 - Influence of protein-related variables were low
- Interactions among the input variables
 - GH-based diets had higher interaction between input variables
 - Mainly from GE and OMd interacting with other input variables

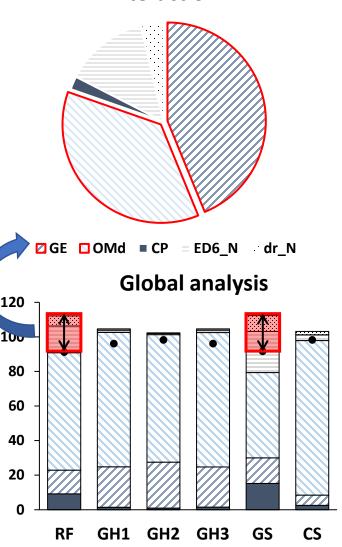
Milk protein yield

General

- Most of the variation occurred mainly due to variations in OMd & GE
- Contribution of ED6_N was non-negligible

Local Analysis

- **Total variability** of MPY
 - GH-based diets showed higher variability than non-GH based diets
- **Direction of change in output** for each input variable change
 - CP, OMd, dr N: MPY increase (positive)
 - ED6 N: MPY decrease (negative)


- **Relative importance** of input variables
 - In the GH diets, the contribution of protein-related input variables being very low (< 2% of each)
 - Unlike the local analysis, the influence of CP in GH2 diet was minimal

Sobol indices (%)

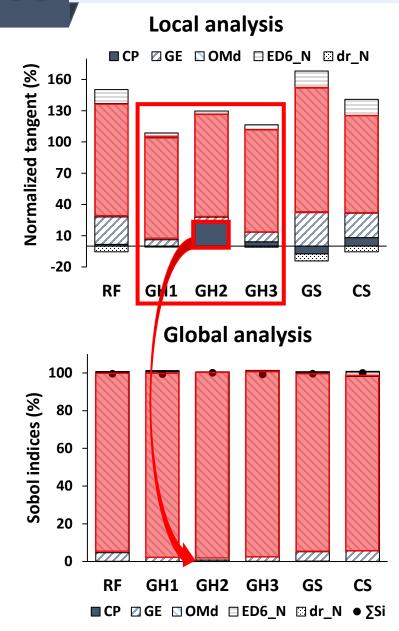
Chapter 3. RESULTS

Milk protein yield

Interaction

■CP ØGE NOMd □ED6_N □dr_N ● ∑Si

General


- Most of the variation occurred mainly due to variations in OMd & GE
- Contribution of ED6_N was non-negligible

Local Analysis

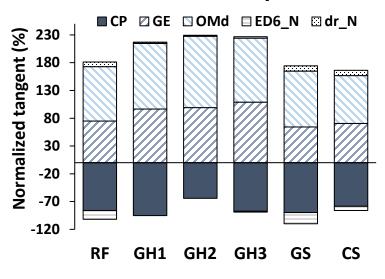
- **Total variability** of MPY
 - GH-based diets showed higher variability than non-GH based diets
- **Direction of change in output** for each input variable change
 - CP, OMd, dr N: MPY increase (positive)
 - ED6 N: MPY decrease (negative)

- **Relative importance** of input variables
 - In the GH diets, the contribution of protein-related input variables being very low (< 2% of each)
 - Unlike the local analysis, the influence of CP in GH2 diet was minimal
- <u>Interactions</u> among the input variables
 - RF & GS diets had higher interaction between input variables
 - Mainly from GE and OMd interacting with other input variables

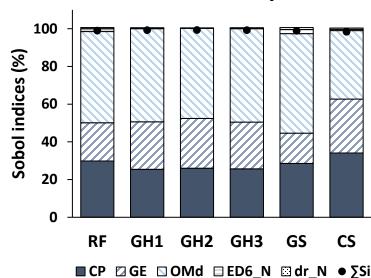
Energy in methane

General

- Relative importance of input variables
 - OMd was the main input variable
 - On average, the influence of CP, ED6_N, and dr_N was not notable


Local Analysis

- *Total variability* of ECH4
 - The variation of GH diets were slightly lower than non-GH diets
- Direction of change in output for each input variable change
 - OMd, GE, ED6 N: ECH4 increase (positive)
 - dr_N: ECH4 decrease (negative)


- <u>Relative importance</u> of input variables
 - Unlike the local analysis, the influence of CP in GH2 diet was minimal
 - The contribution of other 4 input variables being less than 10%
- Interactions among the input variables
 - No significant interaction between input variables

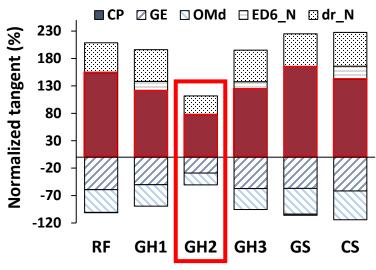
Nitrogen utilization efficiency (N in milk / N intake)

Local analysis

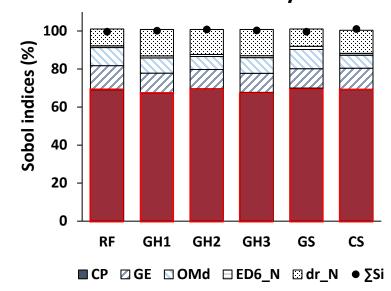
Global analysis

General

- No remarkable difference between two approaches
- Variation of the five input variables were comparable between diets
- Relative importance of input variables
 - Mainly influenced by OMd, GE, and CP
 - ED6 N & dr N have low influence


Local Analysis

- Direction of change in output for each input variable change
 - GE, OMd: NUE increase (positive)
 - CP: NUE decrease (negative)


- Interactions among the input variables
 - No remarkable interaction between input variables (< 1.5%)

Urinary N / Total excreted N

Global analysis

General

- *Relative importance* of input variables
 - UN/TN variations were largely influenced by all 4 input variables except ED6 N
 - CP contributed the most, followed by dr_N, GE, and OMd

Local Analysis

- <u>Total variability</u> of UN/TN
 - Less variation in GH2 diet than the other 5 diets
- Direction of change in output for each input variable change
 - CP, dr_N: UN/TN increase (positive)
 - GE, OMd: UN/TN decrease (negative)

- Interactions among the input variables
 - Ignorable interaction between input variables (< 0.6%)

1. Summary of results

- The relative importance of each input variables was *consistent across both approaches*
- GE and OMd were the main contributors to most outputs (except Urinary N/Total excreted N)
- <u>CP was an important contributor</u> to N-related outputs (i.e. N utilization efficiency, Urinary N/Total excreted N)
- For DMI & MPY, we can get new insights by hydrid two approaches
 - But, less effects on environmental output variables (i.e. ECH4, NUE, and UN/TN)

2. New insights gained from a hybrid

- Large interactions between input variables (Global analysis) can be appeared even low total variation (Local analysis)
 - e.g. DMI with Grass hay-based diets (High PDI/UFL)
 - e.g. MPY with Fresh rygrass- & corn silage-based diets (Low PDI/UFL)
- Global SA can improve the understanding of results obtained on Local SA
 - e.g. positive effect of CP on ECH4 with GH2 (Local) may occur through changes in OMd (GSA)

3. Conclusion

■ This work showed the <u>advantages of a hybrid approach</u> with two SA methods for thoroughly understanding and evaluation of <u>complex and non-linear models</u> such as ruminant feeding systems.

© 2024, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Sensitivity analysis of the INRA 2018 feeding system for ruminants by a one-at-a-time approach: Effects of dietary input variables on predictions of multiple responses of dairy cattle

Seoyoung Jeon, ¹ Sophie Lemosquet, ² Anne-Cécile Toulemonde, ¹ Tristan Senga Kiessé, ³ and Pierre Nozière ¹*

¹UMR Herbivores, INRAE, VetAgro Sup, 63122 Saint-Genès-Champanelle, France

²UMR PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France

³UMR SAS, INRAE, Institut Agro, 35000 Rennes, France

Running head: Hybrid local and global sensitivity analysis

Descriptive title: Sensitivity analysis of the INRA 2018 feeding system for ruminants by

hybrid local and global approaches: Comparing the contribution of dietary input variables to

multiple response prediction in dairy cattle

Seoyoung Jeon¹, Tristan Senga Kiessé², Sophie Lemosquet³, Pierre Nozière^{1*}

¹UMR Herbivores, INRAE, VetAgro Sup, 63122 Saint-Genès-Champanelle, France
 ²UMR SAS, INRAE, Institut Agro, 35000 Rennes, France
 ³UMR PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France

Supple: R scripts for Local & Global sensitivity analysis!!

Under review of the 1st revision (JDS)

THANK YOU FOR YOUR ATTENTION

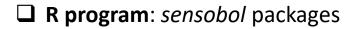
Contact

seoyoung.jeon@inrae.fr / seoyoung203@gmail.com

LinkedIn:

https://www.linkedin.com/i n/seoyoung-jeon-7611a0245/

Committees


 Rémy DELAGARDE, René BAUMONT, Luc DELABY, Yayu HUANG, Patrick CHAPOUTOT, Gaëlle MAXIN \Box Due to redundant counting of values for interaction when calculate ΣST_i

For example, there are 3 input variables (A, B, C) for an output variable (i)

- $T_A = S_A + Inter(A,B) + Inter(A,C) + Inter(A,B,C)$
- $ST_B = S_B + Inter(A,B) + Inter(B,C) + Inter(A,B,C)$
- $ST_C = Si_C + Inter(B,C) + Inter(A,C) + Inter(A,B,C)$

What if there is no interaction between input variables?

- ☐ Sobol index (Sobol, 1993)
 - Variance-based sensitivity analysis
 - (1) First order index (S_i): Evaluate the importance of one input variable (*no interaction*)
 - (2) Total indices (ST_i): Evaluate the importance of one input variable considering *interaction* with other input variables
 - (3) Interaction (STi Si): Level of interaction with other input variables

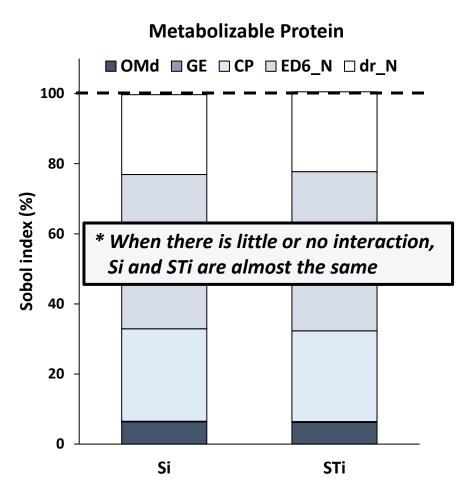


Figure 1. Response of metabolizable protein to change in 5 input variables

Chapter 5. Q&A

Why sobol?

- ☐ Big assumption of 'Pearson' and 'Spearman' correlation coefficient
 - 1) Linearity and/or 2) Monotonicity
 - However, most models of the INRA feeding system didn't satisfy this requirement
- ☐ What if we apply it to a model that is not linear or monotonicity?

■
$$Y1 = 10 \cdot X1 + X2 + X3 + X4 + X5$$

■ $Y2 = 10 \cdot X1^2 + X2 + X3 + X4 + X5$
* $X1, X2, X3, X4, X5 \leftarrow$ Randomly select between -25 to 25 (n = 700; n = 100 for sobol)

Table 1. Sensitivity indices of input variables for Y1

	Pearson	Spearman	Sobol (ST _i)
X1	0.98	0.98	1.00
X2	0.08	0.08	0.01
Х3	0.03	0.04	0.01
X4	0.02	0.05	0.01
X5	0.09	0.09	0.01

Table 2. Sensitivity indices of input variables for **Y2**

	Pearson	Spearman	Sobol (ST _i)
X1	0.06	<0.01	0.96
X2	0.06	0.02	<0.01
Х3	0.07	0.06	<0.01
X4	<0.01	0.03	<0.01
X5	<0.01	<0.01	<0.01

Chapter 5. Q&A

Sobol analysis sequence using R

2. Assigning value to the Sobol matrix

- 3. Extract sobol matrices
- For PrevAlim running

1. Create Sobol matrix

	OMd	ED6_N	СР	dr_N	GE	
1	0.50	0.50	0.50	0.50	0.50	/
2	0.75	0.25	0.75	0.25	0.75	\vdash
						$ \setminus$
n	0.41	0.26	0.30	0.48	0.70	

Feed3

₄ Feed1		OMd	ED6_N	СР	dr_N	GE
	1	87.6	44.2	89.1	88.7	4497.5
/	2	90.9	42.6	92.4	85.5	4664.4
	n	86.6	42.7	86.6	88.5	4623.9
→ Feed2		OMd	ED6_N	СР	dr_N	GE
	1	74.4	69.0	378.7	79.4	4604.7
	2	77.2	66.4	392.8	76.4	4775.5
	n	73.5	66.5	368.1	79.1	4734.1

	OMd	ED6_N	СР	dr_N	GE
1	69.4	67.6	88.0	86.9	4503.2
2	71.9	65.1	91.3	83.6	4670.2
n	68.5	65.2	85.6	86.6	4629.7

- INRAtion V5 4. **PrevAlim** running
 - → Obtain full feed table of each feed

- 5. **Diet optimizer** running
- Obtain output matrix

6. Calculate Sobol index

Number of sample in sobol matrix

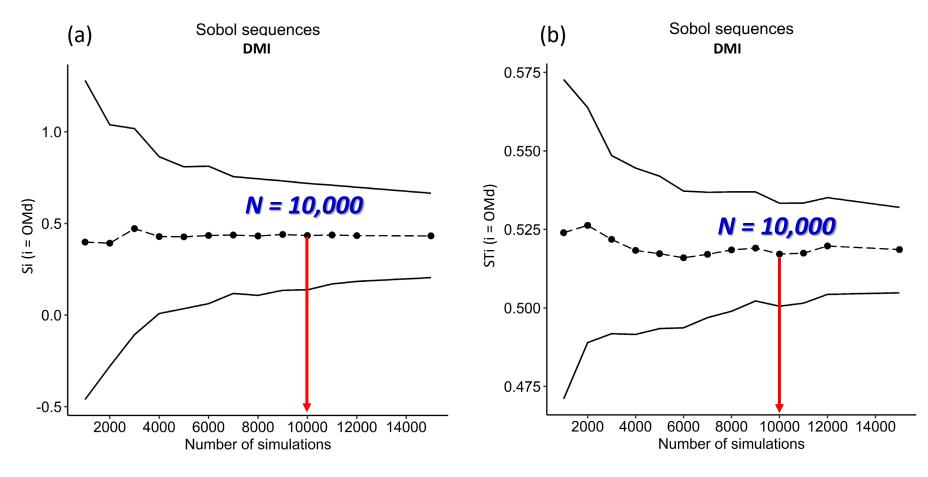


Figure 1. (a) First sobol index (Si, round) and confidence interval (solid line)

(b) Total sobol indices (STi, round) and confidence interval (solid line)