

75th EAAP CONGRESS, FLORENCE 2024

Byproducts in Ruminant Feeding: Exploring their Mitigating Effects on Enteric Methane Emissions

T. F. Akinropo, J.S. Adjassin, D.P. Morgavi, M. Eugène INRAE, UMR1213, Theix, 63122, France.

1st September, 2024

INTRODUCTION 1/3

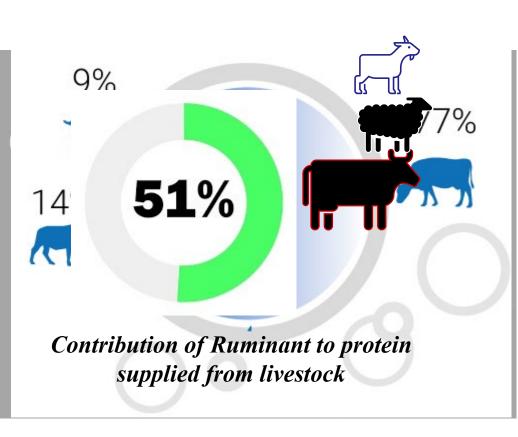


Plate 1: Contribution to the global enteric methane emissions by ruminant species.

Source: FAO, 2024

✓ Ruminants play an important role in **global food security and nutrition**, farmers' livelihoods, and those along the agri-food chain.

✓ The enteric fermentation process naturally occurring in ruminants is one of the main drivers of methane emissions globally.

✓ Enteric methane mitigation strategies were classified into three main categories: <u>animal and feed management</u>, <u>diet formulation</u>, <u>or rumen manipulation</u>.

INTRODUCTION 2/3

✓ By-products are secondary products obtained during the harvest or processing of a principal commodity (Grasser *et al.*, 1995)

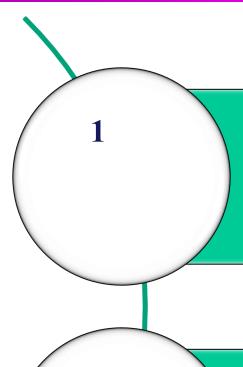
Plate 2: Mixture of lentil screenings. A high protein source that mixes well into a ration of straw and low-quality forage.

Source: Beef Cattle Research Council, 2023

- ✓ The use of by-products in ruminant diets is becoming more prevalent, due to a simultaneous <u>increase in their availability</u> and as a <u>strategy to reduce dependence on cereals and oilseeds-based feeds lowering costs of production compared to traditional feedstuffs</u> (Lingnau, 2011)
- ✓ By-products in the diet of ruminants substantially decreases (15-20% reduction in GHG emissions) the environmental impact of livestock farming (Pardo et al., 2016; Salami et al 2019)

INTRODUCTION 3/3

- ✓ Due to the <u>expensive</u> and <u>laborious</u> nature of quantifying enteric methane *in situ*, there is an increase in <u>mathematical models</u>, including those recommended by the Intergovernmental Panel on Climate Change (IPCC), commonly used to estimate methane emission factors of ruminants.
- ✓ Several predictive models have been developed which offer valuable insights for methane mitigation strategies. However, no study has <u>developed empirical predictive CH4 emission</u> <u>models exclusively focused on the use of agro-industrial by-products (AIBPs) in ruminants' diets</u> with CH4 mitigating strategies. Hence, this study

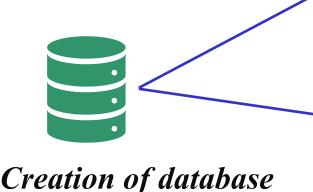

Does the inclusion of AIBPs in ruminants' diets mitigate enteric methane emissions (g/day), yield (g/kg DMI), and intensity (g/kg ECM)?

SPECIFIC OBJECTIVES

To categorize AIBPs into clusters based on their chemical composition

2

To identify predictors for predicting enteric daily methane production (g/d), yield (g/kg DMI), and intensity ((g/kg ECM) in dairy cattle fed AIBP-based diets (variable selection & model development)



METHODOLOGY

2). Model development

CH4 quantification
(Animal characteristics & performance: DMI, Milk yield,, digestibility, etc.)

Steps: n =13 studies, 46 records

- 1. Pub selection using Prisma Scheme
- 2. Metanalysis: <u>Mean effect size</u> & Linear mixed model
- 3. Model development (<u>5 levels of</u> <u>complexity</u>) and evaluation

RESULTS & DISCUSSION 1/4

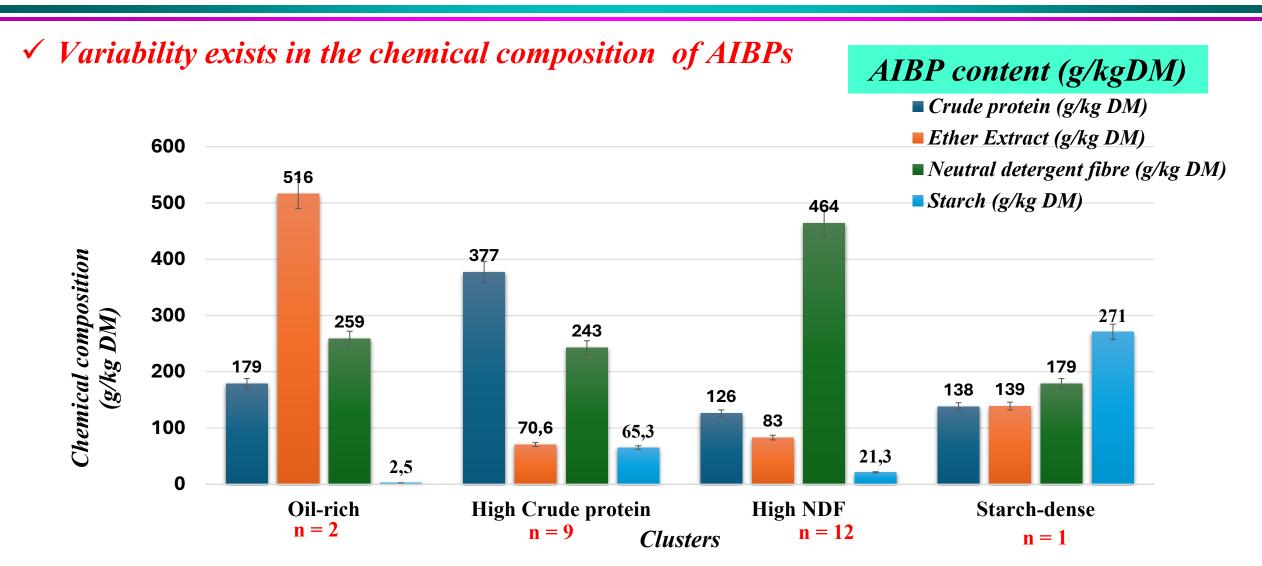


Figure 3: Mean chemical composition of the 24 AIBPs by Cluster

RESULTS & DISCUSSION 2/4

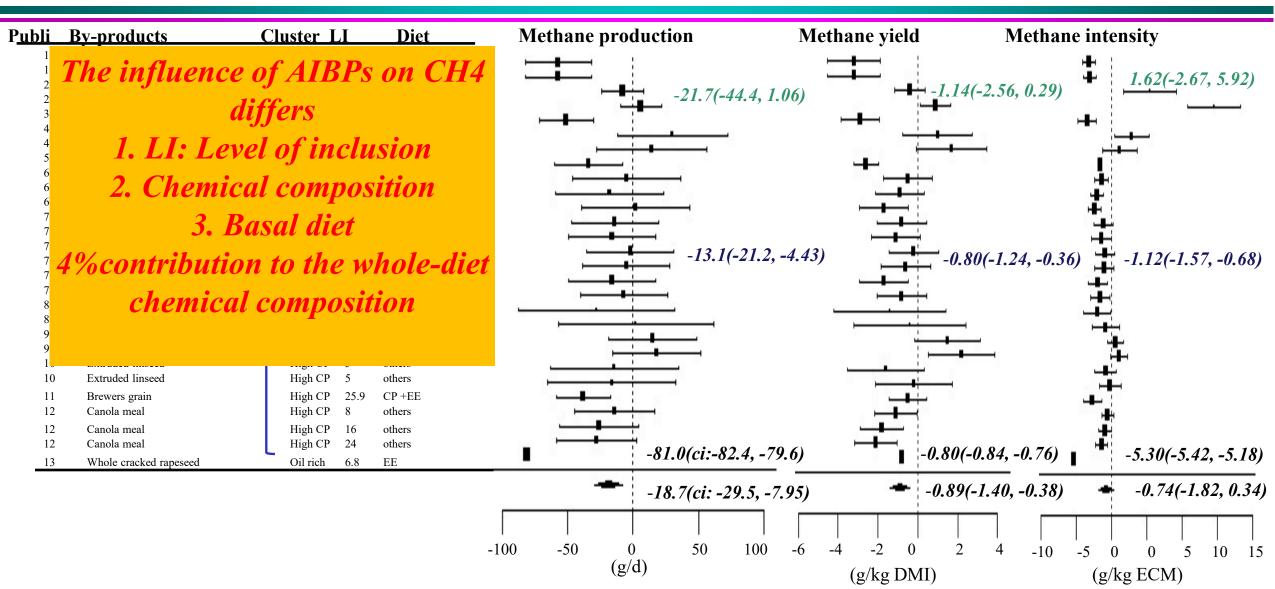


Figure 6. Mean differences to control in CH4 production (g/d), yield (g/kg DMI), and intensity (g/kg ECM)

RESULTS & DISCUSSION 3/4

Table 2: Best prediction equations of methane emissions (g/d per cow), CH4 yield (g/kg DMI), and intensity (g/kg ECM)

Level	Models	N	RMSPE	RMSPE (%)	ED (%)	CCC	RSR
	CH ₄ emissions (g/day)						
2	CH_4 emissions = 551 (507, 594) - 1.49 (-2.04, -0.93) × EE - 1.20 (-2.13, -0.28) × PCO	39	50.8	11.4	98.2	0.34	0.90
	CH ₄ yield (g/kg DMI)						
1	CH_4 yield = -17.2 (-33.4, -1.05) + 50.5(28.0, 72.9) × OMD	23	1.41	7.20	99.9	0.77	0.60
	CH ₄ intensity (g/kg ECM)						
2	CH ₄ intensity = 30.8 (20.6, 40.9) - 0.06 (-0.10, -0.02) × EE - 0.59(-1.05, -0.14) × DMI	37	4.80	31.7	97.0	0.20	0.96

✓ EE (g/kg DM) is consistent with a negative relationship with CH_4 (g/d) and intensity (g/kg ECM)

CH4 = Methane, EE: ether extract concentration, DMI: dry matter intake; OMD: Organic matter digestibility; PCO: percentage of concentrate,, CH4: methane, N: number of observations, RMSPE: root mean square prediction error (in the same unit as the response parameter), RMSPE %: RMSPE as % of observed mean of the response parameter; ED% expressed as a percentage of RMSPE: error due to the disturbance CCC: concordance correlation coefficient (dimensionless), RSR: RMSPE-to-Standard deviation Ratio

RESULTS & DISCUSSION 4/4

✓ Underprediction of observed values for CH4 intensity (g/kgECM)

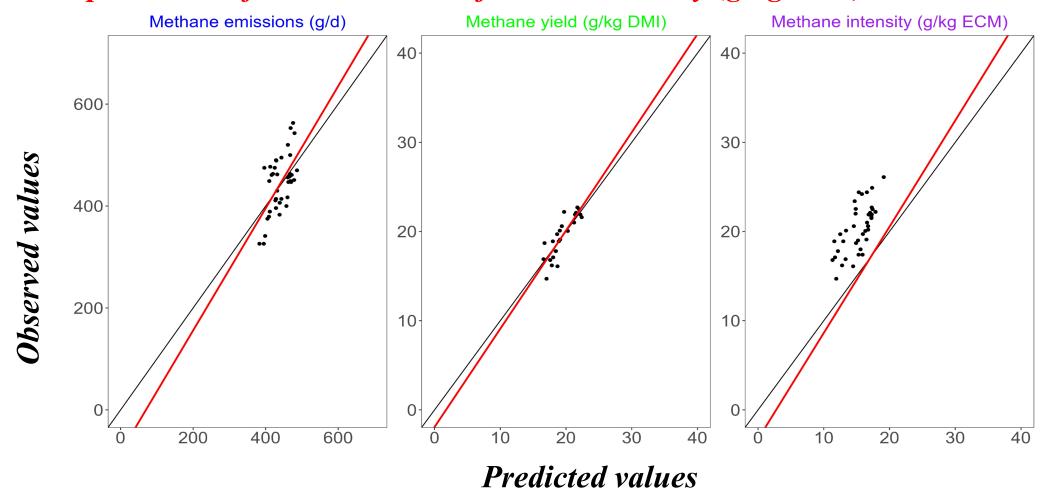


Figure 5: Predicted vs. Observed value plots based on CH4 emissions(g/day per cow), CH4 yield (g/kg DMI), CH4 intensity (g/kg ECM)

CONCLUSION

Influence of AIBP's on methane depends on:

- ✓ *The nature* (origin of the primary product and processing methods)
- ✓ Chemical composition: Methane emissions (g/day) were best predicted by the <u>(EE) ether</u> extract content (g/kg DM) and the percentage of concentrate (PCO) in the whole diet; yield (g/kg DMI) by <u>OMD</u>; and intensity by <u>EE(g/kg DM) and DMI kg/day</u>.
- ✓ *The level of inclusion*: Increased level of inclusion of AIBP decreased enteric methane emissions (g/day per cow); however, reduced effects were observed for AIBPs in the High fibre cluster.

THANK YOU!

Corresponding Author: <u>maguy.eugene@inrae.fr</u>

