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Introduction

Cattle production has been increasing since the Thus, mitigate methane emissions in cattle have been a
last decades because of the continuous demand concern in beef research, the big challenge is to find the best
of meat products (Millen etal., 2013) trade-off between efficiency and sustainability (Makkarand Beever,

2023)

Respiration chambers are
the “Gold Standard” method

Methane

emissions

|Chamber

|

B

)

But, how about grazing cattle?
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GreenFeed as a useful tool to measure GHG
In grazing cattle

GreenFeed

=>The GreenFeed represent the best reasonable
trade-off;

* On-Farm applicability in grazing conditions

allowing non-invasive measurements (Cottle et
al., 2011; Beauchemin et al., 2020)

* Continuous monitoring, providing real-time
measurements over time (sunetal., 2022)

e Cost-effectiveness and maintenance needs
in comparison to other techniques (Beauchemin et

al., 2020)
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Main problem

Unlike Respiration Chambers, the GreenFeed System
collects spot samples and predict the daily CH4 from
these spots.

However, diurnal patterns of CH4 for grazing cattle
are still unknown, which is likely to bias average daily
CH4 estimates.
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Low data collection at certain times

8,000 reads help to fill in the gaps.

Distribution of CH4 Emissions Over a Day
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Data distribution from the best users
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Confidence intervals are heavily penalized by low sample
sizes, but actual measures may still be accurate and precise

Hourly Mean of CO2 Emissions with 95% Confidence Intervals
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Herd-level hourly CH, patterns are possible, but, determining
individual CH, rates is still a challenge...

24 Hr Animals e Zoomingin: 2 best steers

Number of visits to the Greenfeed on an hourly basis .
* Low samples during early

morning and late evening make
15 - sense biologically (rest periods)
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Between-animal variation

Top 10 Animals

Number of visits to the Greenfeed on an hourly basis
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Using one steer: Spot measures do have the
potential to bias average daily estimates

CH4 Emissions per Hour vs\. Average CH4 CO2 Emissions per Hour vs. Average CC\)Z
| o\® o\e o\
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Main objective: Develop a hybrid dynamic-

artificial intelligence model that can predict
iIndividual hourly CH4

+ —  Voluntary feed

> intake (VFI) + Body weight + . _
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+

Figure 1. Feedback loops of variables that alter voluntary feed intake. Self-reinforcing (R) and self-correcting (B) loops are shown within the
semicircle arrows. Positive and negative signs near the arrowheads indicate that the effect if positively or negatively related to the cause. Different
colors represent different feedback loops for ease of identification.
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Partnerships for Climate-Smart Commodities Projects

Expanding Climate-Smart Commodity Markets
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Methods: Animals adaptation to the GF

Native Rangeland: Grazing

June 7" to August 315t

GreenFeed (n = 6) SmartScales (n= 6)
- Enteric Emissions - Body Weight

* Receiving (n =150  Range Data Collection (n=127)
* Training (2 GFs, 297 and 298) « Stratified by BW in each treatment
* Adoption + BW = Selection Decisions
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Methods: Modeling methods

There are ways to predict CH4 through empirical equations

(Benaouda et al. 2019)

Hybrid models (tedeschiet al. 2023)

. e P o
s 8 s B s 8 - 5 B g4 + Machine learning models
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METHODS: Hybrid Dynamic-Al Model  :- 8
Development & G ®
1. Develop a Dynamic Model @ g g g
 Rumen Kinetics - - )
* Precision Livesf:c?clf Data | 3 8 8
2. Develop an Artificial Intelligence ® O
Model O
* Precision Livestock Data ,
3. Integrate output and inputto

maximize the accuracy and precision
of prediction to estimate individual
hourly CH4. (Tedeschi, 2022; https //d0| org/10. 1093/Jas/skac111)
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1. Develop a Precision Data Drive Dynamic Model: Grazing Rumen Kinetics
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Output: S1 “Fiber Digesta” mmmp Individual CH,/hr

D

—— Input Hidden Output
g . layer layer layer
Rateof Fractional rate of
t : absorption (Ka)
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intial digesta S1 Input #1 —@—— 7
N
C o St = C} Input #2 — N B
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from S1 — 22 % |
| Rate of % nput 3 — 7D \
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S1 \ degradation (Kd) Input #4 .

Fractional rate of
escape (Kp)

P.C. Abdallah Chamakh
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2. Develop a Precision Data Drive Dynamic Model

(Adapted from Menendez et al., 2024) 1. Integrate Precision Data to Drive Dynamic
Rumen Kinetics Model
1. Grazing Behavior
. Body Weight
3. Forage Availability
4. Forage Nutrients
5. Climate

N

2. Estimate Rumen Kinetics Pools “S1”

Fractional rate of
Rate of :
| absorbing from  absorption (Ka)

intial digesta S1

Rate of degrading
from S1

Rate of b
escapgw1g from Fractional rate of
\ degradation (Kd)

intake rate

Fractional rate of
escape (Kp)
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Achieving a precision data driven individual
rumen kinetics model for grazing is difficult...
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The Level of Precision Data Complexity:
1. Merits Taking a Step Back

2. Critically Evaluating the Required Causal Structures
Data Hungry to Structure Dependent
Precision Livestock Data is a Means to an End
(Menendez et al., 2023)

3. Drive Individual Hourly Methane Production
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REVISED METHODS: Hybrid Dynamic-Al 2 g

Model Development F o o

G o«

(O Ck C LA

System Dynamics (Sterman, 2000) o c ' o

A. Dynamic Hypothesis Cx Cx O

1. Reference Model Cx O

2. Key Variable Selection O

B. Causal Loop Diagram ¥ ,
1. ldentify key feedback mechanisms

172]
']

related to individual CH4 production

(Tedeschi, 2022; https://doi.org/10.1093/jas/skac111)
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A-1. Reference Model: What is driving CH, behavior?

Distribution of CH4 Emissions Over a Day

r: e . « et "ata ™
: s AR el T
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400

Passage
rate
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A-2. KEY VARIABLE SELECTION: What Endogenous and
Exogenous Variables are driving CH, behavior?

Dynamic Rangeland

Grazing time
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e Results: Causal Loop Diagram
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Discussion and Next Steps

R1: Cattle growth —
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Train, Test and Validate

== the Artificial Intelligence
Model for CH, Prediction
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model in Python
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Thanks for your attention

Acknowledgements to the SDSU and A&M teams, with especial mention to the
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Future perspective of the Climate Smart project:

To evaluate different grazing practices to determine which is the most interesting
in terms of decreasing methane emissions and increasing sustainability of cattle
systems.
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