

EAAP Session 19: Nutritional Modelling and Applications

Objective:

Increase the opportunities of meeting among European modellers

Session 19 proposed by MODNUT-ASPA

Nutritional Modelling Committe

Approved in June 2022

Coordinators: Alberto S. Atzori (UNISS) & Antonio Gallo (UNICATT) 15 Members from Italian Universities

Outcomes

Modelling dossiers in divulgative Journals Courses on nutrition modelling Courses on Requirements and feeding values Capacity building of Italian Scientific Community

Join the next generation publication model for open and transparent science

Science

Free and transparent preprint and postprint recommendations in animal science

https://animsci.peercommunityin.org

contact@animsci.peercommunityin.org

😽 @pci-animsci.bsky.social

Systemic modelling application in animal science: archetypes for teaching and research in animal nutrition

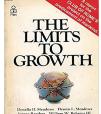
A.S. Atzori¹, B. Atamer Balkan¹, H. Menendez², B. Turner³, A. Gallo⁴, L. O. Tedeschi⁵

¹ Sassari University, Italy, ² South Dakota State University, USA, ³Texas A&M University Kingsville, USA, ⁴Chatholic Sacred HeartUniversity, Italy, ⁵Texas A&M University College Station, USA

The systemic demand is largely increasing

- Demand growth: whole picture vs. reductionist approach
- Teaching and learning from K-12 to MBA
- Global threats vs narrowed technical challenges
- Improve systemic views and apply holistic approaches
- Connect knowledges from different fields
- Wish of complexity understanding
- Simulation scenarios under changed conditions
 - climate adaptation!

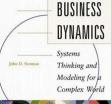
K-12


SYSTEM DYNAMICS (Origins):

VITH SYSTEM CONTROL THEORY

Meadows et al., 1972

al Modeling


Jay orrester MIT

nciples of Systems ban Dynamics orld Dynamics

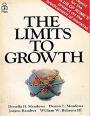
Thinking in Systems

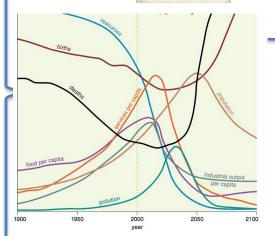
Dynamo, and published as

Club of Rome, and

World Dynamics.


PRINCIPLES OF SYSTEMS




Process Integration and Optimization for Sustainability https://doi.org/10.1007/s41660-020-00130-x

SHORT COMMUNICATION

Policy Development for Pandemic Response Using System Dynamics: a Case Study on COVID-19

Agriculture & Food

Biomedical

Business

Conflict, Defense and

Security

Education

Energy

Environmental

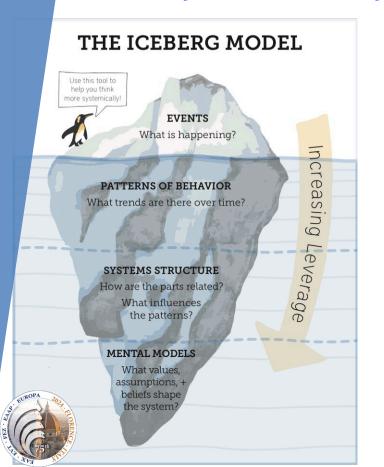
Health Policy

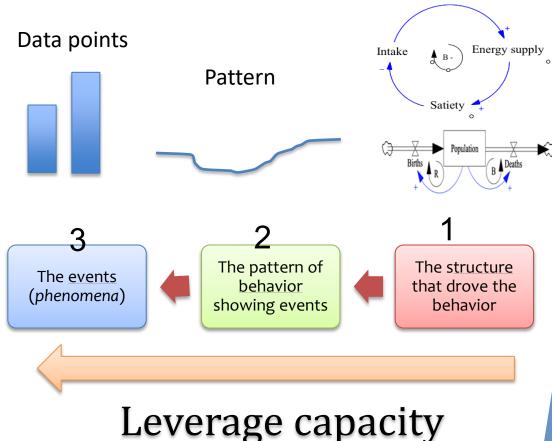
Information Science Information and

Systems

Model Analysis

Psychology and Human

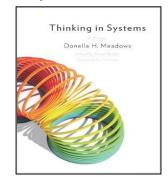

Behavior



System dynamics approach

From "The System Zoo" to "The System Herd"

(Forrester, 1969; Meadows 2002)


Goodman (1974): simple structures on commodity cycles, market dynamics, residential communities, epidemics, and ecology;

Grant et al. (1997) ecological models for rangeland and forest management Ruth and Hannon (1997a; 1997b) biological and economic systems contexts; Deaton and Winebrake (1999) and Ford (1999) environmental science Sterman (2000) business, management, manufacturing, industry, supply chains;

- Fisher (2011) urban dynamics, population dynamics, and epidemics.
- Haefher (2005) biological systems;
- Agricultural Sciences/Animal Sciences?
 - Tedeschi et al., 2011; 2023
 - Turner et al., 2016, 2015;
 - Turner and Goodman, 2018, 2020, .. Etc.

System Zoo

Denver

London

Objective

System Zoo

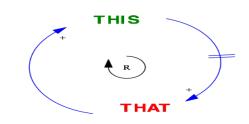
Thinking in Systems

Property of the Control of the

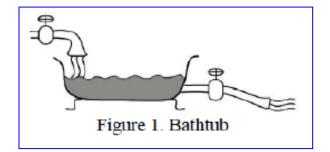
Question: Which basic elements for applications in animal nutrition? (Archetypes, well known structures, etc)

Objective:

to contribute to the whole "System Herd" with the basic pieces of Systemic structures and basic SD models (and feedback loops)



The teaching/learning barriers


Two barriers in learning complexity understanding and system modelling

1) The non-linear thinking (qualitative): (identify feedbacks, thinking for loops, What is nexts?

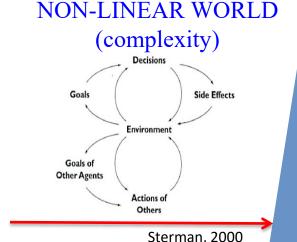
2) The understanding of stock dynamics (quantitative)Stock level changes

1) The non-linear Systemic Thinking

- Awareness and Causality
- Feedback and loops

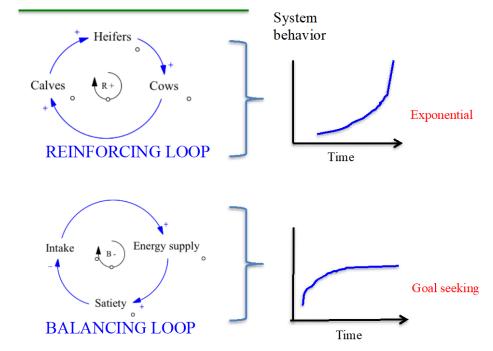
Senge, 1998

- Complexity Understanding
- Insighfulness ("Eureka" or "Ah-Ah" Experience!)


LINEAR APPROACH

TIME?

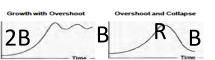
Unintented consequences


Non linear approach: basic annotation

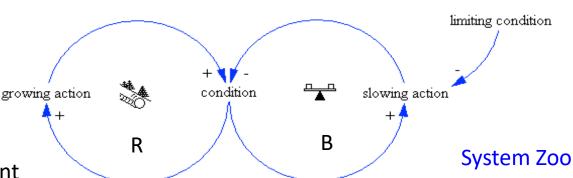
Dynamics arise from Feedback Loop Interactions

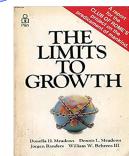

Understanding future trends: ability to trace feedback loops and their effects over time

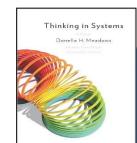
(Adapted from Sterman, 2000)



Time

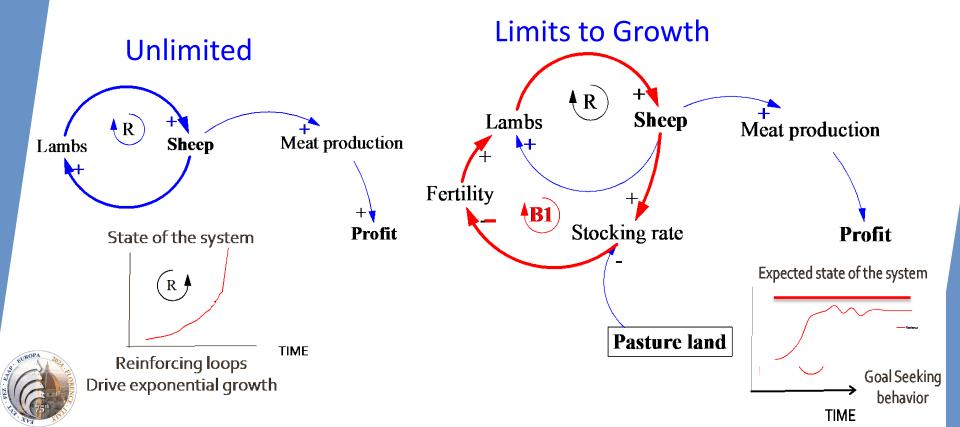

The system zoo: Qualitative (Archetypes)


System Archetypes common dynamics that seem to recur in many different settings. Various combinations of loops, showing real-world examples and tips to system thinking

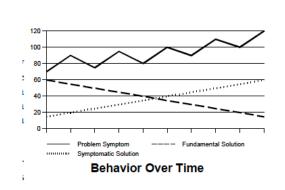

- Limits to Growth
- 2. Drifting Goals,
- 3. Shifting the Burden
- 4. Success to the Successful
- 5. Fixes That Fail
- 6. Tragedy of the Commons
- 7. Growth and Underinvestment
- 8. Escalation
- 9.

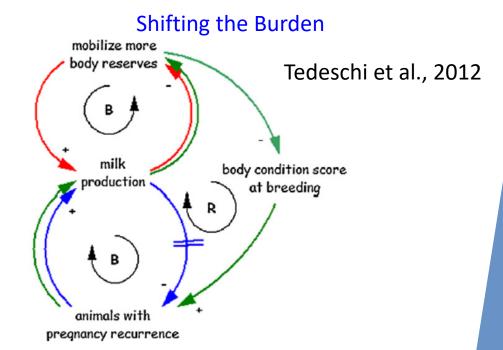
10.

LIMITS to GROWTH



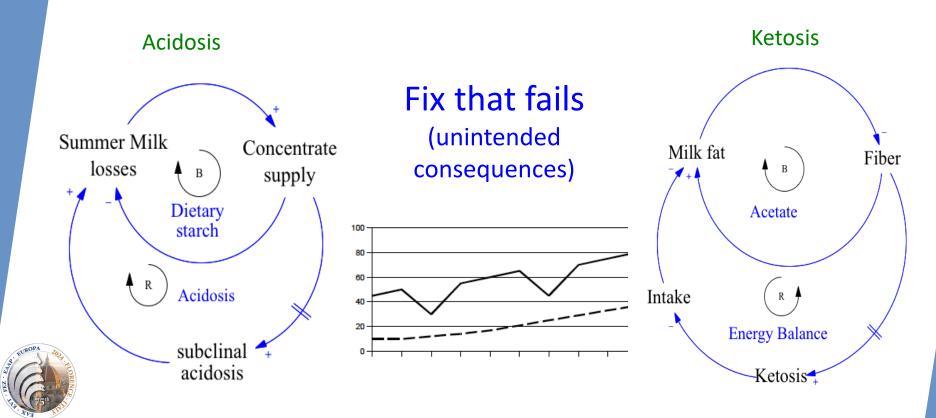
Examples from the System Herd


System Archetypes combinations of loops, real-world examples and tips to system thinking:

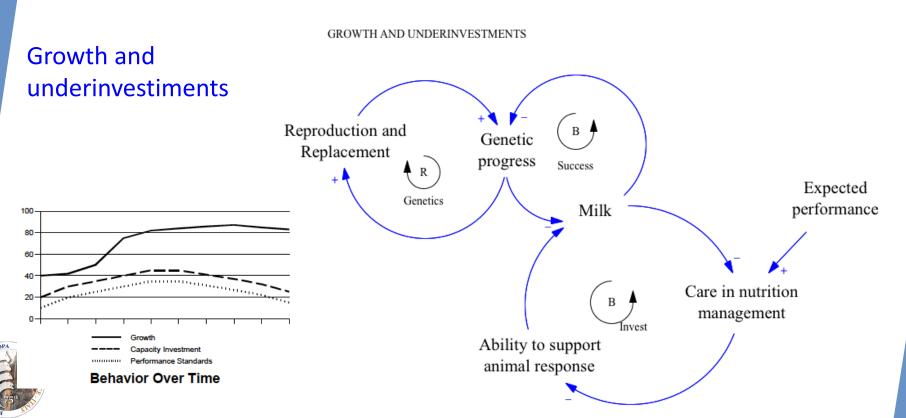


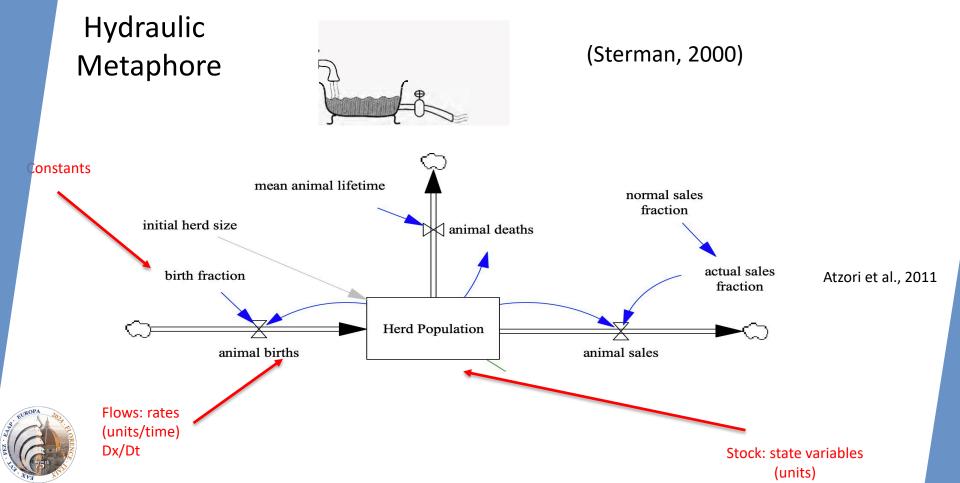
Examples from the System Herd

System Archetypes combinations of loops, real-world examples and tips to system thinking:

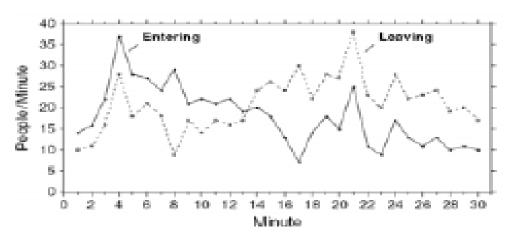


Example from the System Herd


System Archetypes combinations of loops, real-world examples and tips to system thinking


Example from the System Herd

System Archetypes: combinations of loops, real-world examples and tips to system thinking


Barriers: 2) Understanding Stock Dynamics

(Booth Sweeney and Sterman 2000)

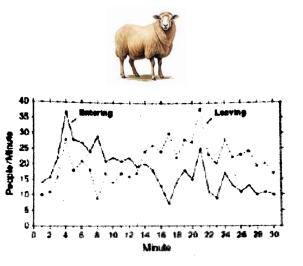
Results

People

- > 90% people identifies Flows
- < 45% identifies Stocks

During which minute did the most people enter the store? 4 (94%)

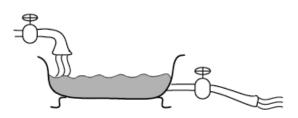
During which minute did the most people <u>leave</u> the store? 21 (94%)


During which minute were the most people in the store? 13 (42%)

uring which minute were the fewest people in the store? 30 (30%)

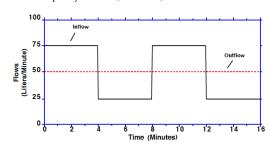
Adapted from Booth Sweeney and Sterman 2000

Satellite Workshop on SD 10th MODNUT Alghero 2022

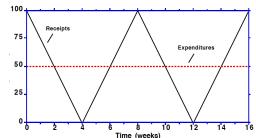

Resear		Already		Outflo	O: 1	0. 1
chers	Age	SD soft	Inflow	W	Stock	Stock
17	20-30	50%	82%	71%	6%	24%
12	30-40	40%	83%	83%	17%	25%
4	40-50	8%	75%	75%	25%	50%
3	>50	5%	100%	100%	0%	33%
36	all	55%	83%	78%	11%	28%

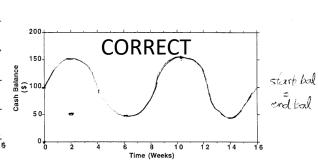
B. Sweeney and Sterman 2000 94% 94% 42% 30%

- During which minute did the most sheep enter the barn ? 4
- During which minute did the most sheep leave the barn?
- During which minute were the most | sheep in the barn?


which minute were the fewest sheep in the barn? 17

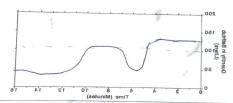
The Bathub Test: awareness of stock changes Booth Sweeney and Sterman 2000


Assume the initial quantity in the tub (at time zero) is 100 liters.



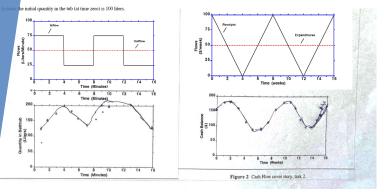
ине виключал

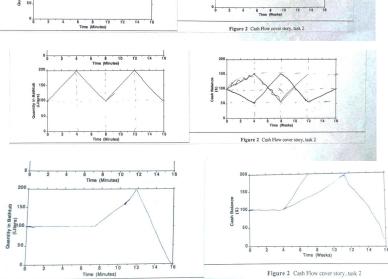
12

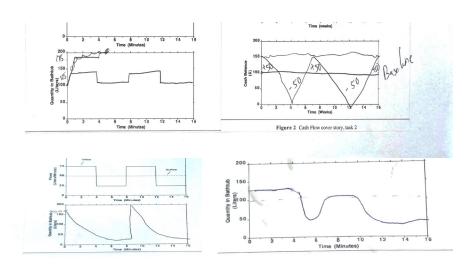

30

"subjects from an elite business school (MBA) with no prior exposure to SD, have a poor understanding of stock and flow"

UNCORRECT Very creative!



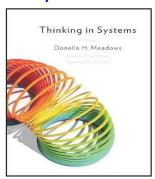

uniss agraria Olipartimento di agraria


Adapted Booth Sweeney and Sterman 2000

Satellite Workshop on SD 10th MODNUT Alghero 2022

Student/ Researchers	Age	Already Vensim	Constant flow left	Linear changes right
17	20-30	53%	18%	8%
12	30-40	42%	8%	0%
4	40-50	100%	0%	0%
3	50+	100%	0%	0%
36		ठ्ठप्र	इस्स	ट्रप

The system Zoo: Quantitative Modelling

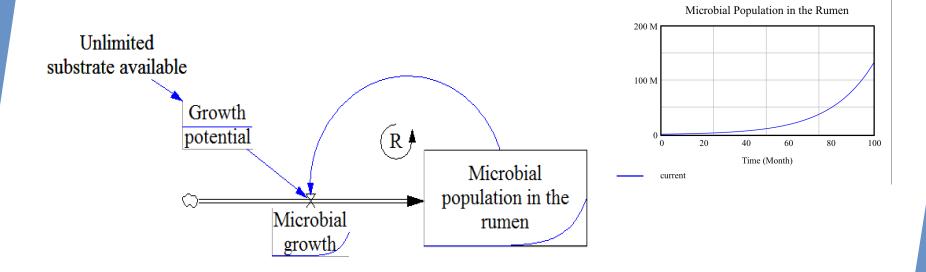

The System Zoo

One stock structure

- Reinforcing loop (expontential growth)
- Balancing loop (exponential decay)
- 1 balancing + 1 reinforcing loop (Population model births and deats))
- 2 balancing loops (Furnace)

Two or multiple stocks Structures

- 1 renewable and 1 non-renewable resource (Oil market)
- 2 renewable resources (Fish Banks)
- Delays (supply or aging chains)
- Logistic or epidemic model (SI, or SIR)



Meadows (1997; 2008)

The system herd: One stock basic structure 1) (reinforcing loop)

(Unlimited resources)

Reinforcing loop → exponential growth

The system herd: One stock basic structure 2)

uniss unissi agraria Dipartimento di agraria

(balancing loop)

Exponential decay
Insulin and glucose challenge

Passage rate

Blood Glucose

Glucose bolus

Blood Glucose

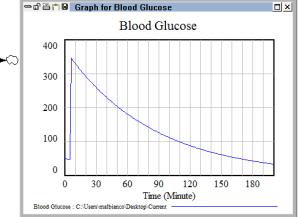
Glucose

Clearence fr
rate

A

A

Clearence fr


Haefner, 1996

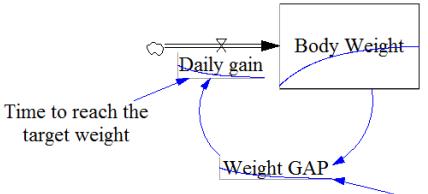
Haefner, 1996

Time (min)

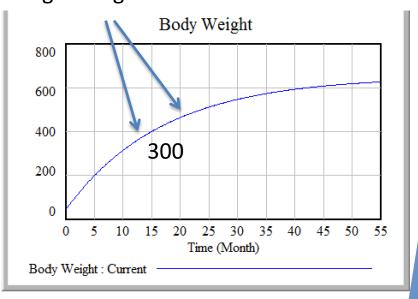
Simple Degradation rate kinetics

Haefner, 1996

The system herd:

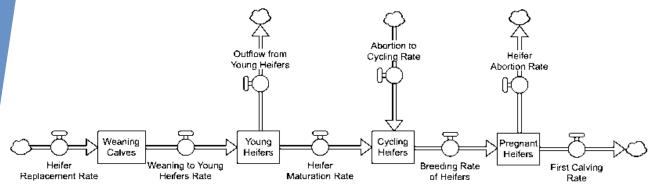


One stock basic structure 3) (balancing loop)


Explicit goal Goal Seeking

HEIFER GROWTH

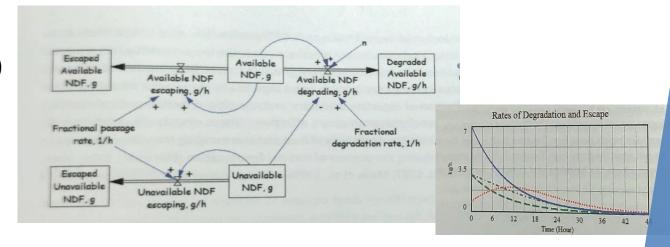
Target weights?



Other: Simple Degradation rate kinetics

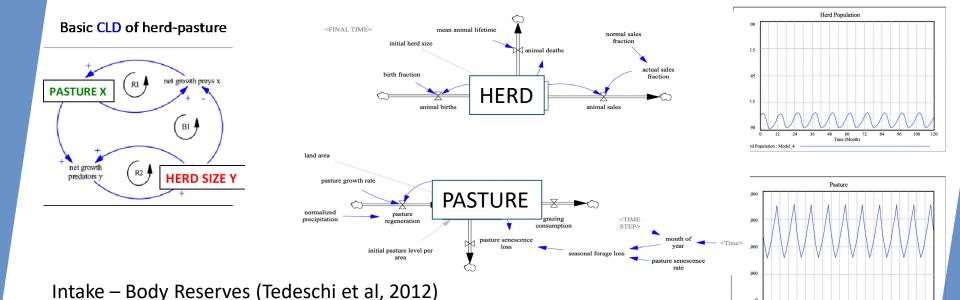
Mature weight

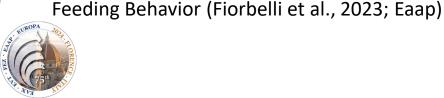
The system herd: Multiple stocks: time delays (aging chains)



Heifer Dynamics (Atzori et al., 2023)

Digestive dynamics (Tedeschi and Fox 2018)





The system herd: Two stocks (renewable)

Herd – Pasture as predator-prey model (Lotka Volterra)

ASAS-NANP Symposium 2023: (Atzori et al., 2023)
Mathematical Modeling in Animal Nutrition

Conclusions

- Systemic applications requires understanding of feedback thinking and stock dynamics
- Qualitative archetypes can be useful to enhance insightfulness for ST and management actions (technical, policy)
- Simple models of basic stock structures might support stock and flows dynamics in digestive or livestock systems
- More examples can be built and listed to increase the size of "The system Herd".

Aknowledgements

The math model will come at the right time (Yaman Barlas)

Questions?

www.systemdynamic.it

the System Dynamics Society
st groups bring together people with shared interest in specific topics

Agriculture & Food

Approved in March 2016

https://systemdynamics.org/agriculture-and-food/