

Enhancing Agricultural Sustainability

An Optimization Model for Crop Rotation and Diet Formulation in Dairy Farms under European Union Common Agricultural Policy (EU CAP)

Crop Rotation

- Enhanced soil fertility
- Improved crop yield
- Pest and weed management
- Pollution reduction
- Biodiversity conservation

(Nadeem et al., 2019)

Home-grown Feeds

Table 5 **Production practices on dairy farms, 2016**

	Farm production practices								
	Hired share of labor	Purchased share of feed	Farms that purchase all feed	Farms that do not graze cows					
	Percent o	of expenses	Percent of farms						
All farms	22.7	53.6	3.1	47.0					
All cows	67.1	70.6	13.7	80.0					

(USDA, 2020)

"At least 71% of the EU's farmland is used to feed livestock, according to new research published by Greenpeace. Around 63% of arable land is dedicated to feeding farm animals."

(ERPS, 2023)

A Unique Challenge for Dairy Farmers

Crop Production

Single/double cropping
Crop rotation
Crop production cost & yield
Cash crop or save for animals

Feed Storage

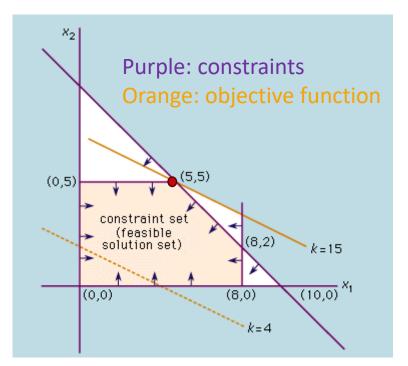
Storage limitation

Diet Formulation

Nutrient adequate
Least cost
Enteric methane emissions

Converting Practical Challenge to Optimization Problem

What is the **best** way for dairy farmers to use their croplands and feed their cows under the crop rotation regulations?


- Fulfil crop rotation regulations
- Fulfil animal nutritional requirements
- Net revenue

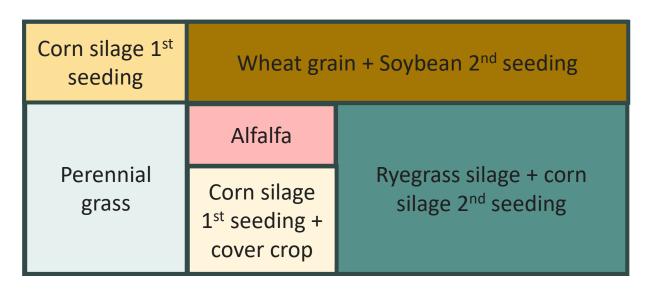
Net revenue = milk income + cash crop income -crop production cost - market feed cost

Enteric methane emissions

Constraints

Objective functions

Crop Planning Part - Crops


- 33 crop types (9 winter crops, 12 first seeding crops, 6 second seeding crops, 5 perennial crops, and 1 cover crop)
 - 88 possible crop configurations within one year of growing season

One ye	ar of growing season		ı					
First seeding crop								
First seeding crop Cover cro								
Winter crop or alfalfa4 Second seeding crop								
Alfalfa1								
Alfalfa2								
Alfalfa3								
	Perennial grass							
	First se	First seeding crop Winter crop or alfalfa4 Second seeding crop Alfalfa1 Alfalfa2 Alfalfa3	First seeding crop First seeding crop Winter crop or alfalfa4 Second seeding crop Alfalfa1 Alfalfa2 Alfalfa3					

Crop Planning Part - Fields

- Fields have various sizes
- All fields are assumed to be uniform
- Each field can accommodate at most one crop configuration each year

Crop Planning Part - Rotation

- Perennial grass grow rule
 - "Permanent" grassland
 - Which fields are grassland are given as an input
- Alfalfa grow rule & rotation rule
 - Alfalfa grow for 3.5 yr (alfalfa1 grows to alfalfa2, grows to alfalfa3, grows to alfalfa4)
 - After the termination of alfalfa, it cannot be grown again in the same field for at least 2 years
- General rotation rule
 - Crops with the same species cannot be continuously grown

Year1		Year2			
Corn silage 1st see	eding	Corn silage/snap	×		
Corn silago 1st cooding	Cover crep	Corn cilago/cna	olago/grain 1st cooding		
Corn silage 1 st seeding	Cover crop	Corri silage/sila	olage/grain 1st seeding	/	
Ryegrass silage Corn	silage 2 nd	Corn silage/snap	olage/grain 1 st seeding	×	
	·I and	5 "	o u ond		
Ryegrass silage Corn	silage 2 nd	Ryegrass silage	Corn silage 2 nd	/	

Diet Formulation

 Animal diets (home-grown + purchased) need to meet the Dry Matter Intake (DMI) and nutritional requirements for 11 animal groups

 $DMI_amin \leq DMI_{t,a} \leq DMI_amax,$ $Nutrient_amin \leq Nutrient_{t,a} \leq Nutrient_amax,$

(NASEM,2021)

TABLE 21-1 Predicted Nutrient Concentrations (DM Basis) Needed to Meet the Nutrient Requirements for Holstein Cattle at Varying Stages of Lactation and Ages of Maturity

									Lactating Cows by Parity (Body Weight) and Days in Milk a					Milk a
							Dry Cows		5	First (570 kg)		Mature (700 kg)		
		(Growing Cal	ves and Hei	fers		Days P	repartum	Days-in-Milk	15	150	20	100	200
Age, days	30	100	225	350	475	600	60–21d1	<21d	Milk, kg	33	39	53	55	43
BW, kg	65	120	230	330	420	530	740	740	Fat %	3.9	3.6	3.7	3.5	3.8
Growth Rate, kg/d	0.7	0.7	0.9	0.8	0.7	0.9	0.0	0.0	Protein %	3.1	3.0	2.8	2.8	3.3
Dry matter intake, kg/d	1.4	3.9	6.6	8.5	9.8	11.0	13.9	13.0	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20.8	23.9	25.8	29.4	27.4
ME, Mcal/kg	3.68	2.26	2.09	1.95	1.92	2.12	1.93	1.89		2.39	2.61	2.58	2.73	2.60
NE, Mcal/kg	_	_	_	_	_	_	1.28	1.28		1.51	1.72	1.61	1.80	1.73
Rumen-degraded protein, %	_	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0	10.0	10.0
Rumen-undegraded protein, %	_	6.6	4.4	2.6	1.7	2.7	1.9	3.6		6.2	7.0	7.5	7.4	7.5
Crude protein, %	21.0	16.6	14.4	12.6	11.7	12.7	11.9	13.6		16.2	16.0	17.5	17.4	17.5
Metabolizable protein, %	16.5	9.5	8.1	6.8	6.1	14.0	5.2	6.2		9.9	9.8	10.8	10.7	10.8
Net protein, %	10.7	5.1	4.4	3.9	3.6	10.7	3.6	4.2		6.7	6.7	7.4	7.3	7.3
NDF, min %	_	25-33	25-33	25-33	25-33	25-33	25-33	25-33		25-33	25-33	25-33	25-33	25-33
Forage NDF, min %	_	19-25	19-25	19-25	19-25	19-25	19-25	19-25		19-25	19-25	19-25	19-25	19-25
Starch max, % (varies)	_	15-20	15-20	15-20	15-20	15-20	15-20	15-20		22-30	22-30	22-30	22-30	22-30

where a: animal group,

t: year

Nutrient is either Energy for Lactation (NEL), Crude Protein (CP), Neutral Detergent Fiber (NDF), starch, and fat

Three Policies to Mitigate Methane Emissions

BASELINE

 $Maximize\ Net\ revenue = milk\ income + cash\ crop\ income \\ -crop\ production\ cost - market\ feed\ cost$

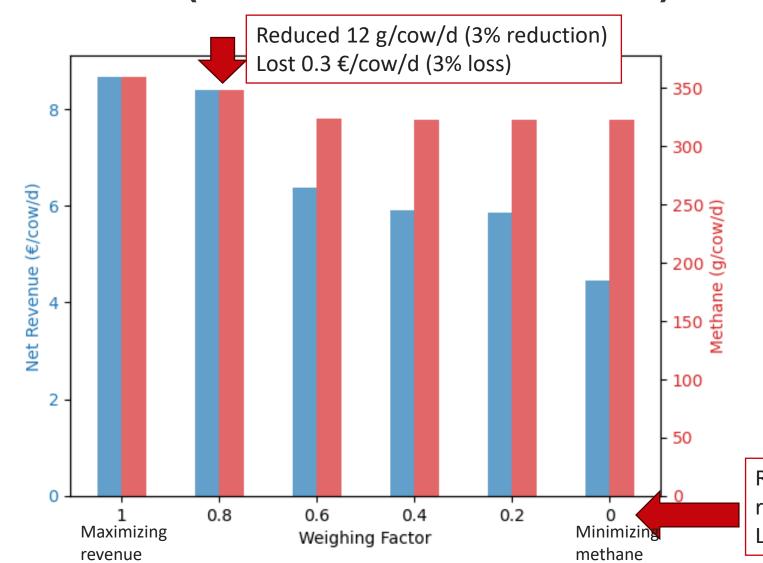
• 1. **MULTI**: multi-objective

Maximize $\alpha * net \ revenue' + (1 - \alpha) * methane'$, where α is weighting factor within the range [0, 1]

• 2. **TAX**: applying taxation on methane emissions

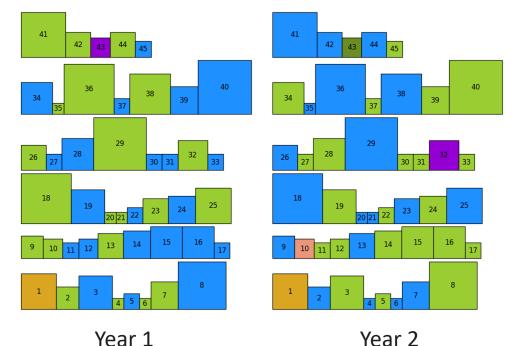
 $Maximize\ Net\ revenue = milk\ income + cash\ crop\ income \\ -crop\ production\ cost - market\ feed\ cost - tax\ cost$

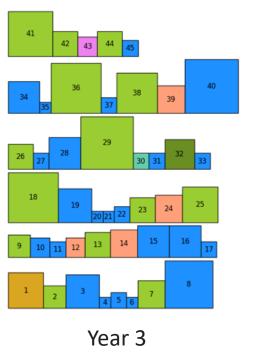
• 3. **RED**: explicit reduction percentage (1%, 2%, ... max%)

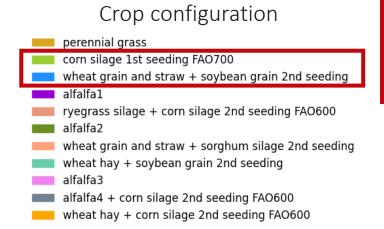

Case Study Farm

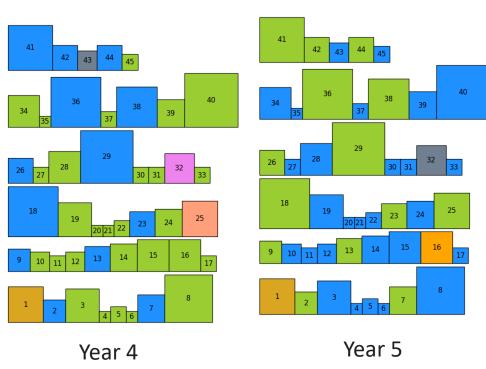
- a North Italian dairy farm
- 300 ha. (45 fields)
- 1007 animals (478 lactating cows)
- Milk price: 38.4 €/100kg
- Crop rotation for 5 years

Results – MULTI (Revenue vs. Methane)

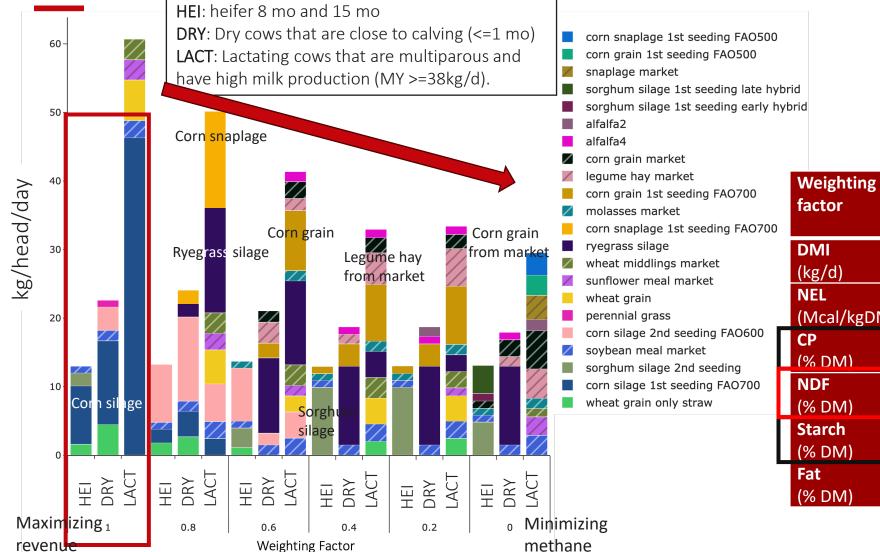



Reduced 37 g/cow/d (10% reduction)

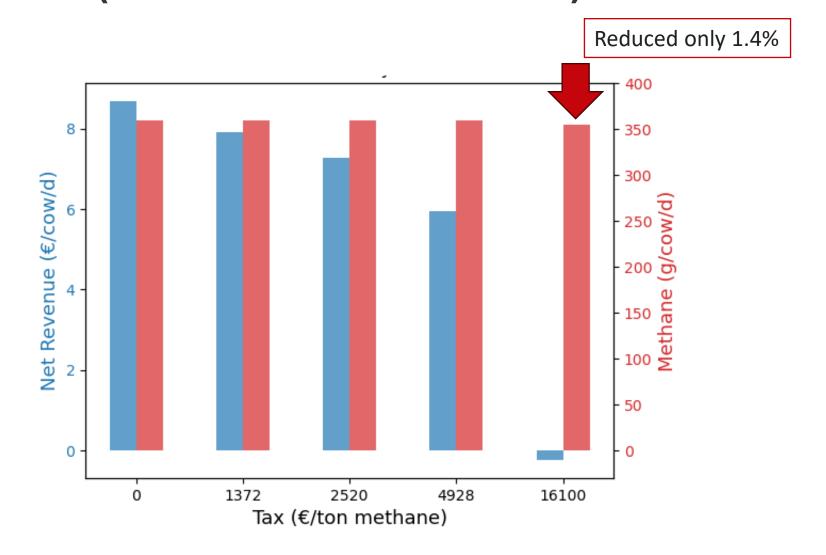

Lost 4.2 €/cow/d (48% loss)


Results – MULTI (Crop Plan)

Weighting factor = 1 (only maximizing net revenue)

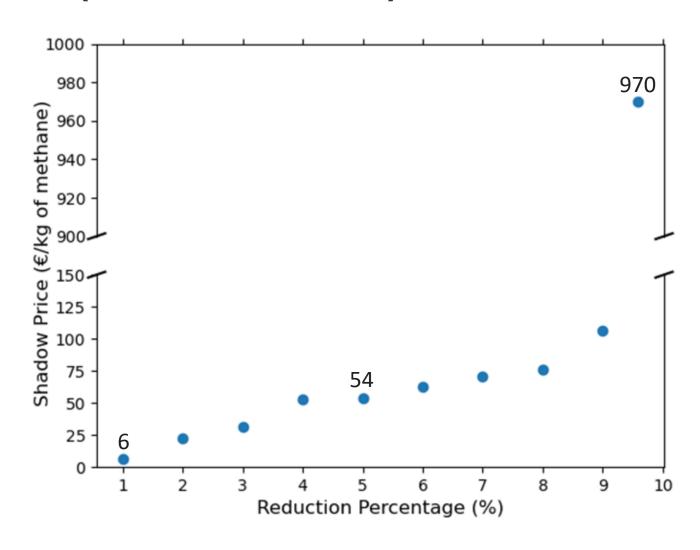


Results – MULTI (Animal Diets)



Nutritional profile

Weighting factor	1 (base line)	0.8	0.6	0.4	0.2	0
DMI (kg/d)	16.2	16.1	16.1	16.1	16.1	16.1
NEL (Mcal/kgDM)	1.5	1.6	1.6	1.6	1.6	1.6
CP (% DM)	14.5	14.8	15.7	15.9	15.9	16.2
NDF (% DM)	41.5	38.2	32.7	31.8	31.8	31.8
Starch (% DM)	21.1	24.0	22.9	23.7	23.7	23.3
Fat (% DM)	3.3	3.3	2.9	2.7	2.7	2.9




Results – TAX (Revenue vs. Methane)

Results – RED (Shadow Price)

Acknowledgements

- Funding sources:
 - Fellowship from the OECD Co-operative Research Programme: Sustainable Agricultural and Food Systems in 2023/2024.
 - "Fondazione Romeo ed Enrica Invernizzi" as part of "Safety of Silage" research project and by NODES ("Nord Ovest Digitale e Sostenibile") project, which has received funding from the MUR – M4C2 1.5 of PNRR with grant agreement n. ECS00000036.
- Collaborators in Italy:
 - Andrea Bellingeri, Francesca Fumagalli, Francesco Masoero, Alberto Stanislao Atzori, Gian Simone Sechi
- Prof. Michael Ferris for providing GAMS license
- Victor and labmates

