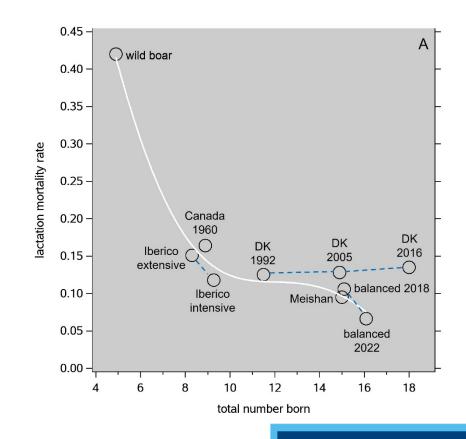


Validation of a Piétrain sire breeding program on crossbred piglets' vitality and congenital defects

Wim Gorssen, C. Winters, R. Meyermans, L. Chapard, K. Hooyberghs, J. Depuydt, S. Janssens and N. Buys

Background


Balanced breeding to improve piglet vitality in sow populations

 Break negative genetic relationship between litter size and mortality

Congenital defects have prevalence of 1-3%

Link with mortality

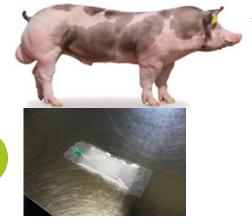
Less weight on these traits in paternal pig breeding programs

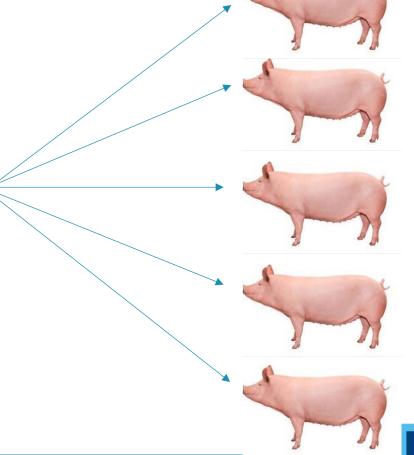
Research objectives

Validation of a Piétrain sire breeding program on crossbred piglets' vitality and congenital defects from 2019 → 2024

1. Genetic parameters

- 2. Phenotypic evolutions
- 3. Validation of findings with independent dataset




Progeny testing scheme Flanders (Belgium)

Commercial sows inseminated

- VPF: ~5 sows/boar, ~300 boars/year
- ILVO: ~12 sows/boar, ~80 boars/year

Boars genotyped (50K SNP chip)

Crossbred litters scored by farmers

Vitality

Vitality score from 1 (low) to 5 (high)

Reproductive capacity and mortality

- Number piglets born alive, stillborn, weaned
- Pre-weaning mortality

Congenital defects

- Splay legs
- Scrotal hernias

Dataset

419 common boars in both datasetsOngoing data collection, started in 2015

Trait	N records	
Scored litters	17,390	
Scored litters with pre-weaning mortality	14,715	
Scored litters with congenital defects	12,225	
Piétrain sires	2,025	
Genotyped sires	1,317	
Hybrid sows	4,831	
Farms	4	

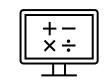
Methods

5-trait sire-dam genetic model via remlf90 software:

$$y = Xb + Za + Yd + Wc + e$$

Sire effect (a) with pedigree and genotypes

Dam effect (d) with pedigree


Fixed effects (b)

- Parity
- Farm
- Gestation length
- Litter size
- Weaning age

Common sow group effect (c)

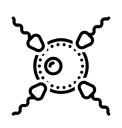
Genetic parameters

Low heritability estimates (5,2 to 15,6%)
Substantial maternal effects

	Heritability	Variance explained by dam	Variance explained by common sow group
Vitality score	8.1% (2.0)	10.6% (0.9)	2.9% (0.5)
Scrotal hernia	12.2% (2.4)	7.1% (0.8)	1.6% (0.4)
Splayleg	15.6% (2.3)	10.6% (0.8)	1.4% (0.4)
Pre-weaning mortality	11.8% (1.9)	17.0% (0.9)	2.3% (0.4)
Number stillborn	5.2% (1.2)	17.9% (0.8)	3.3% (0.3)

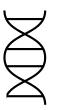
Genetic correlations

Favorable correlation between vitality scores, splaylegs and pre-weaning mortality

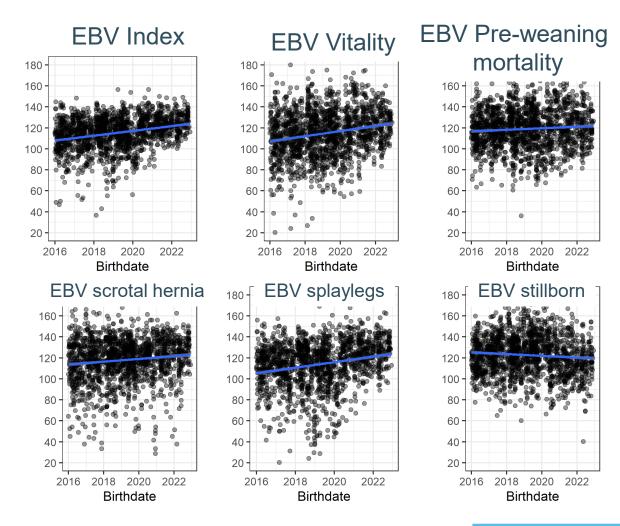

Positive correlation between vitality scores and scrotal hernias?

Trait	Scrotal hernia	Splayleg	Pre-weaning mortality	Number stillborn
Vitality score	0.31 (0.20)	-0.59 (0.14)	-0.52 (0.14)	-0.17 (0.23)
Scrotal hernia		0.05 (0.16)	-0.05 (0.16)	0.06 (0.25)
Splayleg			0.43 (0.13)	-0.23 (0.18)
Pre-weaning mortality				0.24 (0.18)

Breeding program VPF

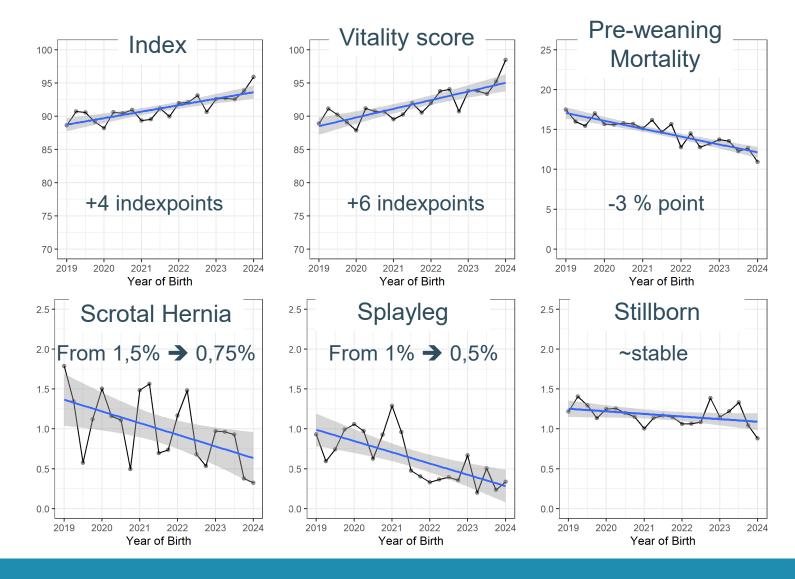


Farrowing house index introduced in 2019, updated in 2024


Favorable evolution in EBVs progeny tested sires

Little evolution in pre-weaning mortality

only recently included


Negative outliers decreasing

Favorable phenotypic evolutions!

Validation with independent dataset

Pre-weaning mortality and splaylegs highest correlations

- Translatable from one environment to another
- → Paternal Piétrain breeding program can improve vitality and decrease congenital defects in crossbred piglets!

	Phenotypical correlation mean phenotype	Genetic correlation	
Index	0.18	0.39	
Vitality score	0.12	0.14	
Scrotal hernia	0.10	0.44	
Splayleg	0.28	0.84	
Pre-weaning mortality	0.13	0.59	
Number stillborn	0.00	0.27	

Limitations of the current study

Purebred-crossbred genetic correlation?

Simultaneous improvements in dam genetics and/or management?

Phenotypes recorded by farmers at litter level

- Phenotyping accuracy?
- Added value of individual records?

Findings translatable to non-intensive (organic) systems?

Take-home message

A paternal Piétrain breeding program can be effective in improving crossbred piglets' vitality and decreasing congenital defects!

- Heritability of 5-16%
- Favorable evolutions in time
- Validation with independent dataset

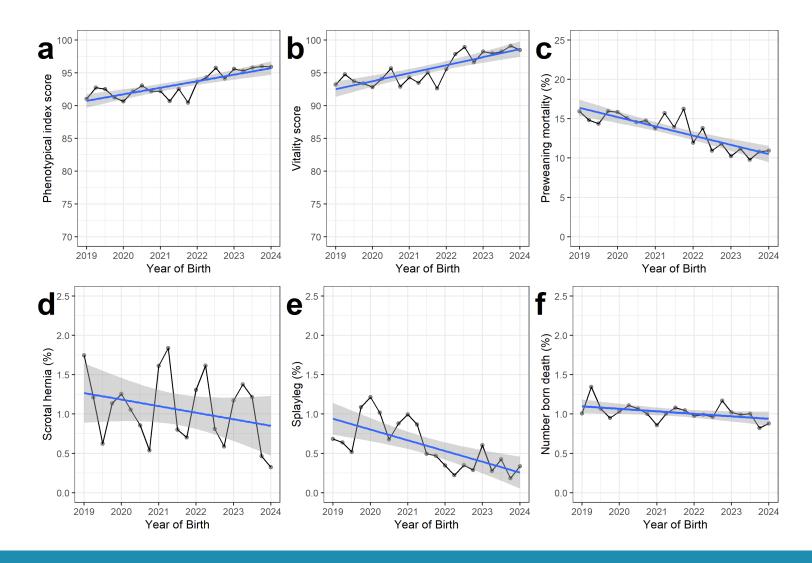
Phenotype and include these traits as well in paternal pig breeding lines!

Acknowledgments

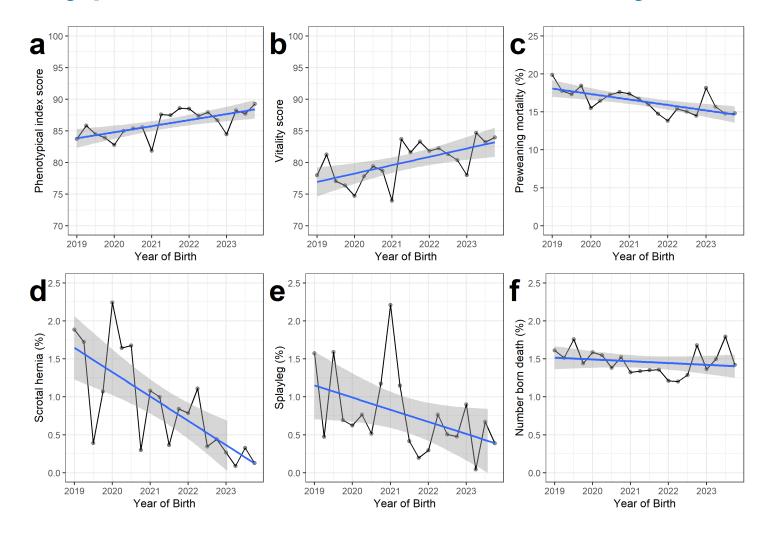
Data providers

Funding

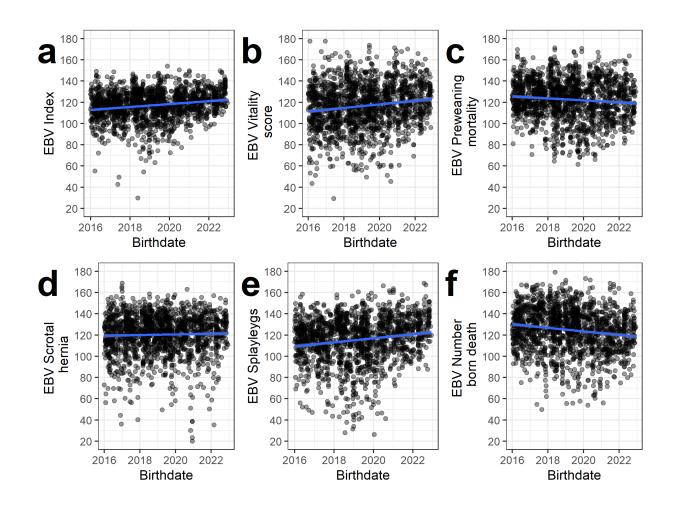
Grant ID: 1104320N



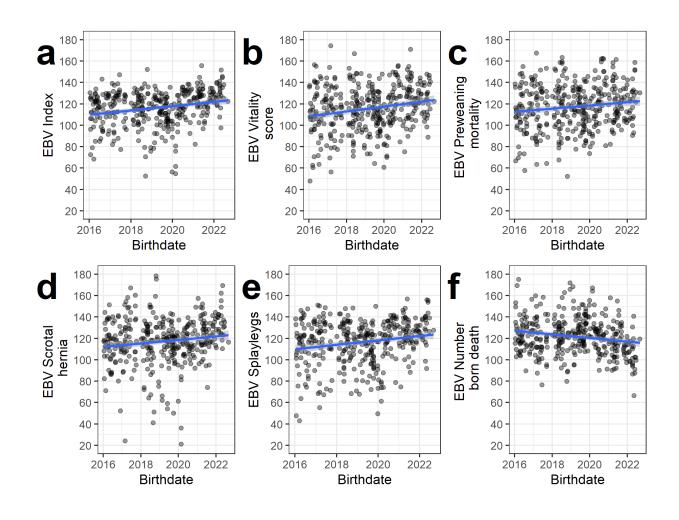
Thank you for your attention!



Phenotypic evolutions VPF only



Phenotypic evolutions ILVO only



EBV evolutions VPF only

EBV evolutions ILVO only

The 75th EAAP Annual Meeting

1/5 September 2024 - Florence, Italy

Validation of a Piétrain sire breeding program on crossbred piglets' vitality and congenital defects

J. Depuydt, S. Janssens and N. Buys

Session 22 "Innovation in pig genetics"

wim.gorssen@kuleuven.be

