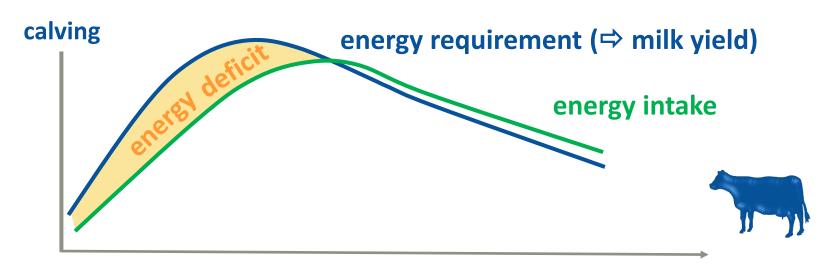


Session 23: Management measures to

Influence of incomplete milking on the metabolic and oxidative stress status in early-lactating cows with high lipolysis

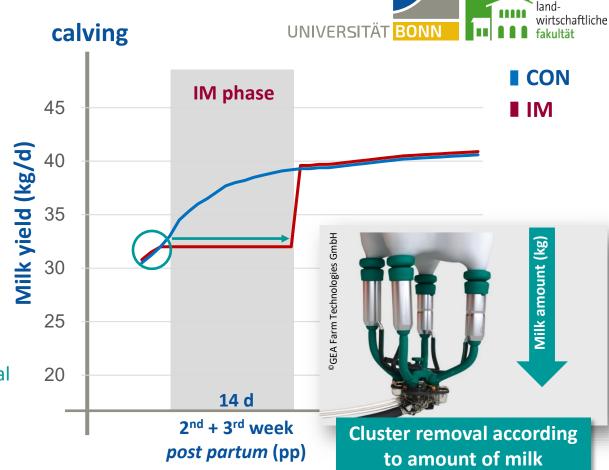
Müller U.*, Joest R., Südekum K.-H., Häußler S.

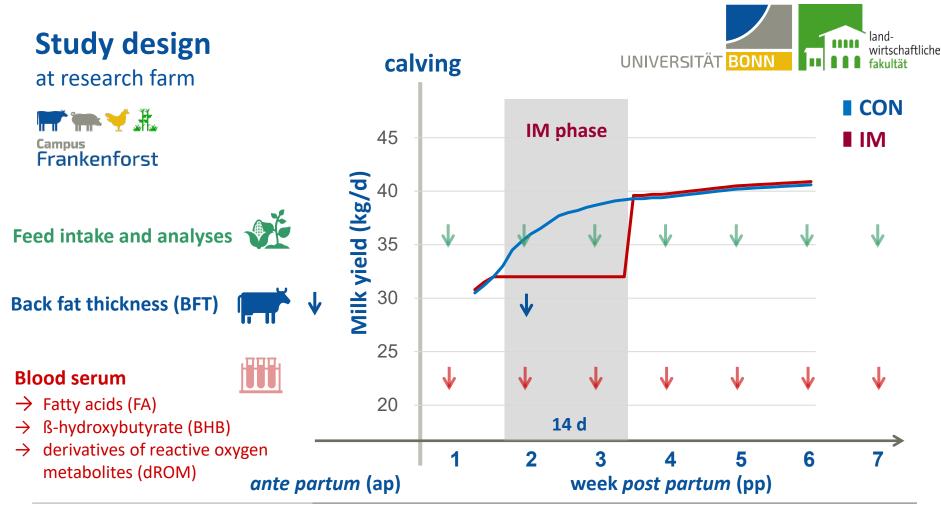
University of Bonn, Institute of Animal Science


*ute-mueller@bonn.de

75. EAAP Annual Meeting 2024 in Florence

Energy deficit in early lactation

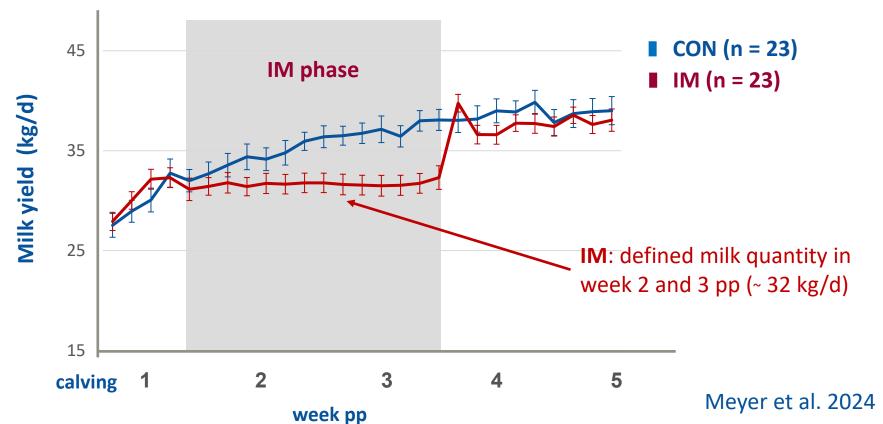

High energy demands around calving ⇒increasing energy deficit


- ⇒ high-yielding cows mobilize body fat (= lipolysis)
- ⇒ metabolic and oxidative stress (Bernabucci et al. 2005, Schuh et al. 2019 etc.)

Hypothesis

Temporary incomplete milking (IM) can positively affect the metabolism of cows with high lipolysis in early lactation.

IM by the software-module of Schmidt et al., 2017 (International patent WO 2019/048,521 A1)



Milk yield $(kg/d, mean \pm SE)$

Conclusion of the first analyses

- -> published in JDS 2024 (Meyer et al.)
- ✓ Applicability of the milking software module used for delaying the increase of milk yield during the early lactation was shown.
- ✓ When IM ceased, milk production of the IM cows immediately reached the level of the CON cows.
- ✓ Udder health not compromised throughout the observation period.
- ✓ CON and IM do not differ in their metabolic status.

J. Dairy Sci. 107:628–641 https://doi.org/10.3168/jds.2023-23777

© 2024, The Authors. Published by Eisevier inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The impact of automated, constant incomplete milking on energy balance, udder health, and subsequent performance in early lactation of dairy cows

 Meyer, E. Haese, K.-H. Südekum, H. Sauerwein, and U. Müller* Institute of Animal Science, University of Bonn, 53115 Bonn, Germany

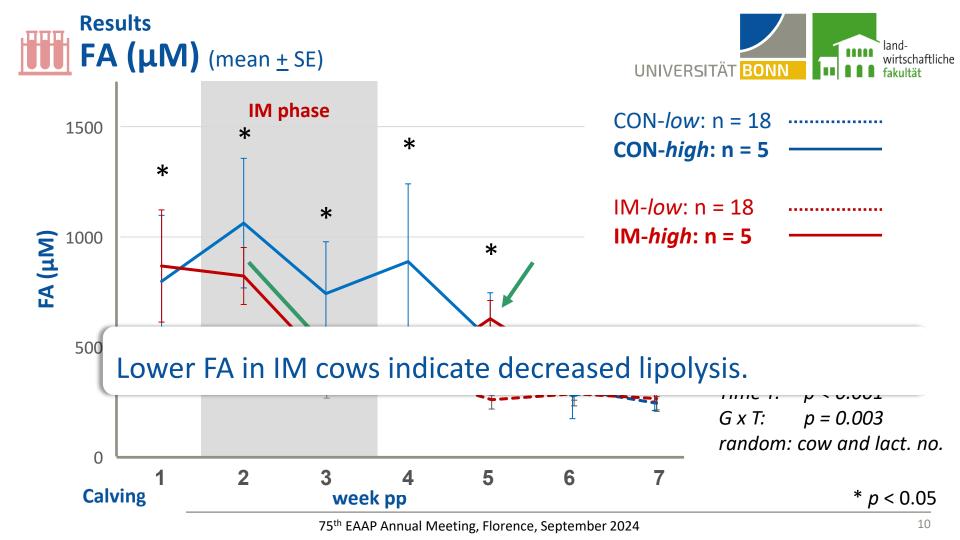
Detailed clustering of the cows:

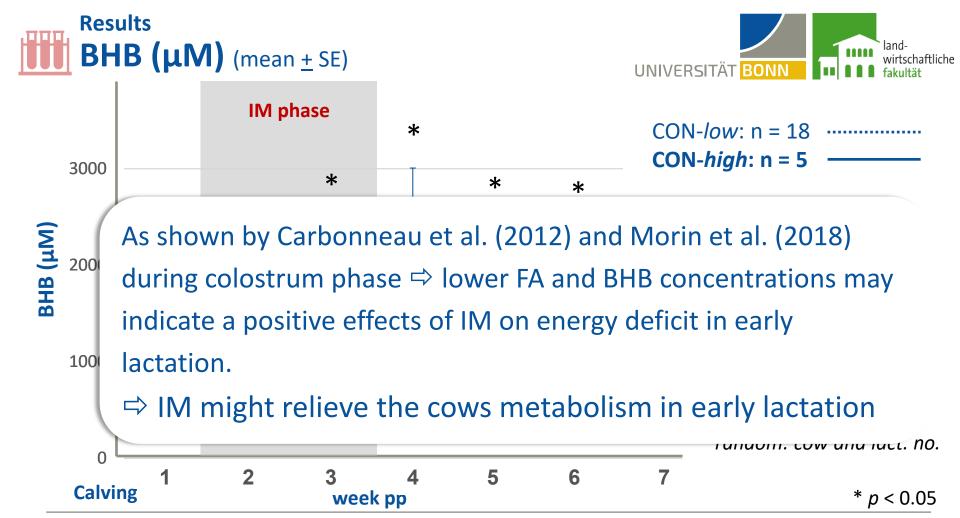
Indicators of high lipolysis

FA = Fatty acid

		<i>"high</i> cows" n = 10	<i>"low</i> cows" n = 36	<i>p</i> -value (Mann-Whitney-U)
	FA week 1 or 2 pp			
	Indicators within week 1 pp			
	FA (μM)			
É	Energy intake (MJ NEL/d)			
,	Milk yield (kg/d)			
ř	delta BFT ap to pp (%)			

BFT = Back fat thickness

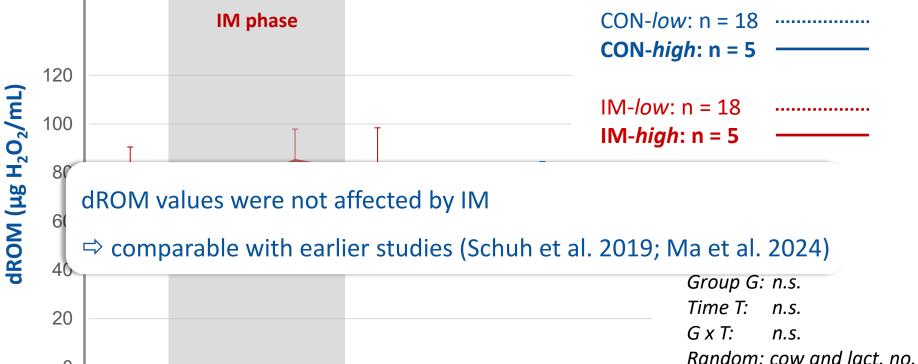

Incomplete milking group (IM)


$$IM-high: n = 5$$

6

_	3
	week p

5



Calving

dROM ($\mu g H_2 O_2/mL$) (mean \pm SE)

week pp

5

6

* p < 0.05

Conclusion

Metabolic response of early-lactating cows to IM varies:

⇒ Cows without indicators of lipolysis do not need an IM strategy.

⇒ Cows with indicators of lipolysis seem to profit from IM.

Oxidative status was not affected by IM.

Incomplete milking in early lactation

- ✓ Potential to relieve metabolism
- ✓ Individual strategy possible

©GEA Farm Technologies GmbH

Quelle: A. Heymann

Thanks to

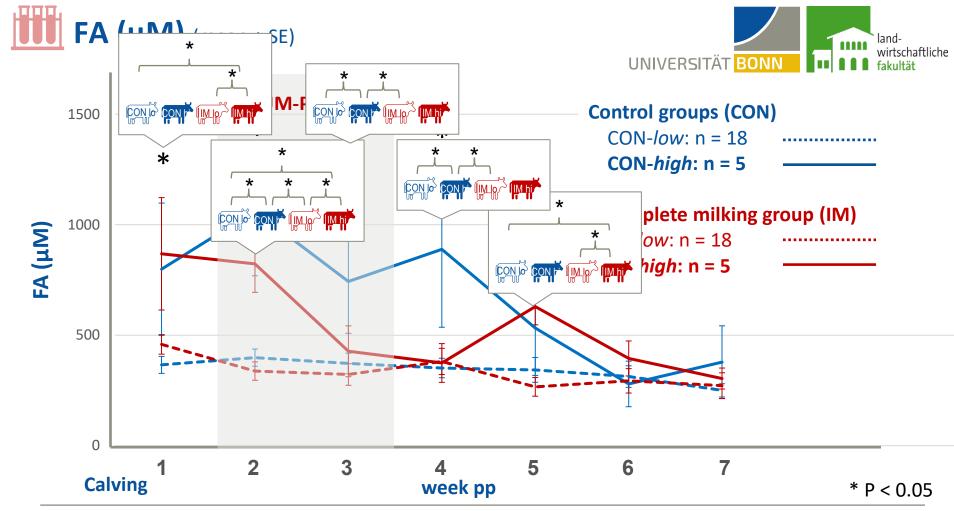
to the Staff of the

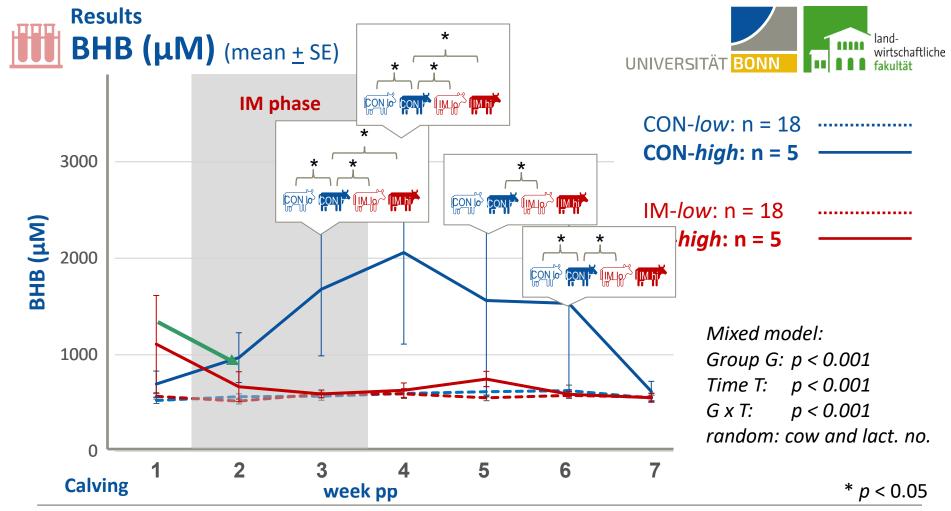
- Institute of Animal Science, and
- Research Station Campus Frankenforst

The research project was funded by the Inter-Departmental Center of Sustainable Agriculture (USL) of the Ministry of Agriculture and Consumers' Affairs of the State of North Rhine-Westphalia, Düsseldorf, Germany.

Thank you for your attention

Appendix




	Methods
Fatty acid (FA)	automatic photometric analyzing system (Eurolyser, Type VET CCA, Salzburg, Austria)
ß-Hydroxybutyrate (BHB)	automatic photometric analyzing system (Eurolyser, Type VET CCA, Salzburg, Austria)
derivatives of reactive Oxygen Metabolites (dROM)	as described by Sauerwein et al. (2020): with N, N-diethyl-para-phenylendiamine as chromogenic substrate (Alberti et al., 2000) with modifications according to Regenhard et al. (2014)

Statistical analyses

- IBM SPSS Statistics V 29.0
- Data presented as mean ± SE
- Linear mixed model with repeated measures
 - Fixed effects: Groups (G), time (T), interaction G x T
 - Random effect: Cow, lactations no. (age)
 - Multiple comparison based on estimated rand means
- Pairwise comparison with Mann-Withney-U-Test
- P-Value: signifikant (*): $p \le 0.05$, trend: 0.10 > p > 0.05

BFT measurement

The BFT measurement was done above the *M. longissimus dorsi*, right side, and perpendicular to the spinal cord between the 12th and 13th rib and at the 5th lumbar vertebra (Bruckmaier et al., 1998a,b) by ultrasound (LOGIQ V2; GE Healthcare GmbH, Solingen, Germany) using an endolinear probe (5–10 MHz; LK760-RS, GE Healthcare GmbH) at 9 MHz and 7 cm depth.

Detailed clustering of the cows

⇒ indicators of high lipolysis

	<i>high</i> cows n = 10	<i>low</i> cows n = 36	P-value (Mann-Whitney-U)
FA week 1 or 2 pp	≥ 800 µM	< 800 μM	-
BFT ap	1.6 ± 0.2 cm	1.3 ± 0.1 cm	n.s.
BFT week 2 pp	1.0 ± 0.1 cm	1.2 ± 0.1 cm	n.s.
delta BFT to ap	- 24.8 ± 10.4 %	+ 3.6 ± 9.2 %	0.049
MR Feed intake (kg/d)	33.0 ± 1.1	37.1 ± 0.5	< 0.001
Milk yield (kg/d)	28.8 ± 0.6	27.8 ± 0.4	n.s.

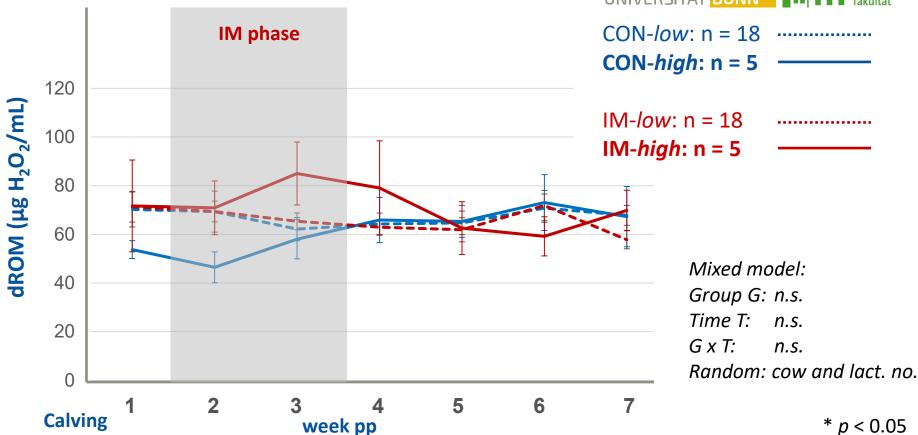
FA = Fatty acid

BFT = Back fat thickness

MR = Mixed ration

Detailed clustering of the cows

⇒ indicators of high lipolysis


	<i>high</i> cows n = 10	<i>low</i> cows n = 36	P-value (Mann-Whitney-U)
FA week 1 or 2 pp	≥ 800 µM	< 800 μM	-
BFT ap	1.6 ± 0.2 cm	1.3 ± 0.1 cm	n.s.
BFT week 2 pp	1.0 ± 0.1 cm	1.2 ± 0.1 cm	n.s.
delta BFT to ap	- 24.8 ± 10.4 %	+ 3.6 ± 9.2 %	0.049
BCS ap	3.45 ± 0.10	3.38 ± 0.05	n.s.
BCS week 2 pp	3.30 ± 0.08	3.19 ± 0.05	n.s.

FA = Fatty acid BFT = Back fat thickness

dROM ($\mu g H_2O_2/mL$) (mean \pm SE)

