Insect frass and poultry manure: a novel circular economy approach for sustainable vegetable production in Mediterranean regions.

The PRIMA project ADVAGROMED experiences.

A. Parente¹, A. El Yaacoubi², R. Rosa-Garcìa³, C.G. Athanassiou⁴, C. Rumbos⁴, L. Gasco⁵

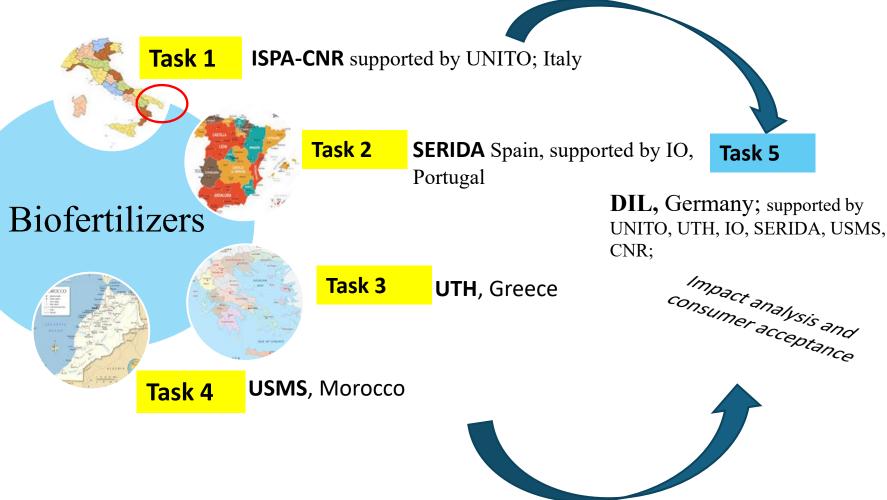
¹ CNR - ISPA, Via Amendola, 122/O, 70126 Bari, Italy, ² USMS, P.B. 170, 54000 Kenifra, Morocco, ³ SERIDA, AS-267, 33300 Villaviciosa, Spain, ⁴ UTH, Fytokou, 384 Ioannina, Greece, ⁵ DISAFA UNITO, Largo Braccini, 2, 10095 Torino, Italy

Sustainable agriculture: why?

Post-green revolution intensification of agriculture has resulted in soil degradation in the form of compaction, erosion, loss of organic matter, pesticide contamination, loss biodiversity, increased soil salinization and waterlogging

Sustainable agriculture systems are able to restore soil quality by the use of organic fertilizers, biopesticides and crop rotation.

Organic fertilizers represent a source of plant nutrients and their use improve the soil organic matter content.

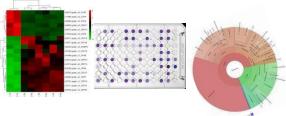

The WP 4 is performed in 5 tasks (1-4 agronomic case studies)

Common approach

- Sustainability of agricultural techniques
- Local agro-biodiversity approach

Differences

- Agro-environmental context (locations/agro-ecosystems)
- > Local crop varieties
- > Frass used



Step 1 – Physico-chemical and microbiological (bacterial and fungal population) characterization: frass, poultry manure, and soil. (carried on by CNR, UTH, SERIDA, USMS).

Essential for a correct use as organic fertilizers

The content of macro and microelements is closely dependent on the insect's diet.

Macro and micro-nutrient content of the Tenebrio and Hermetia frass.

Macronutrient content in different batches of *Tenebrio molitor* L. and *Hermetia illucens* L. frass.

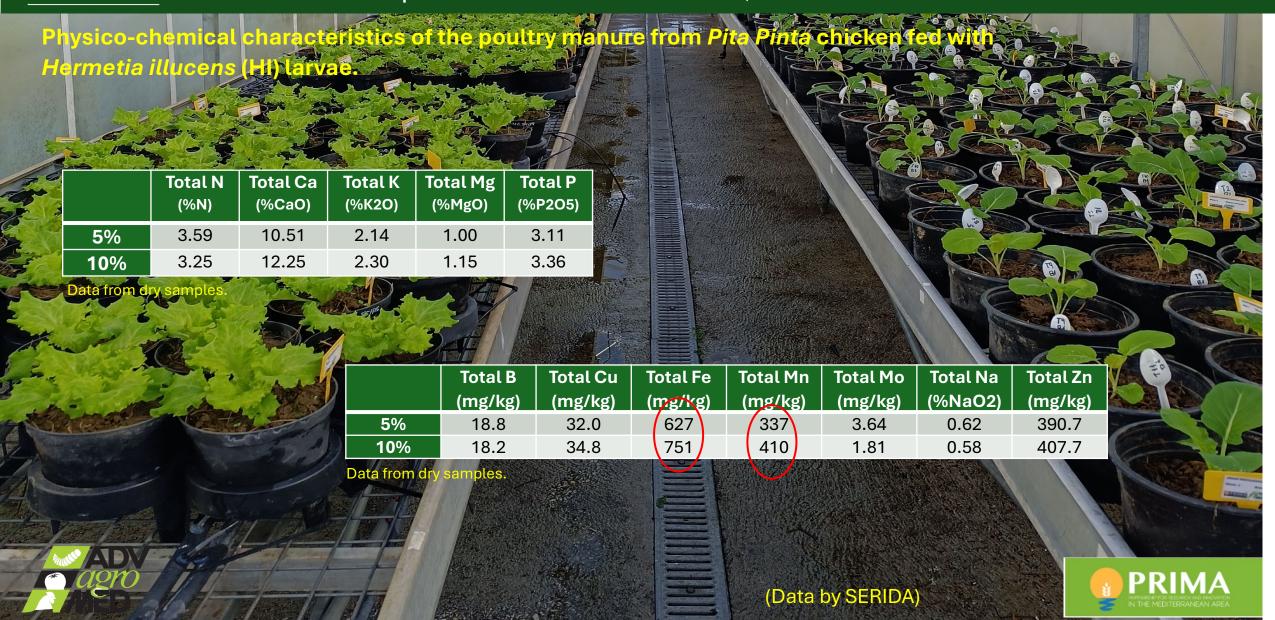
	Ca	К	Mg	Р				
g/kg of dry weight								
Tenebrio								
Batch1	4.5	37.6	11.2	32.9				
Batch2	2.6	27.7	9.0	22.3				
Batch3	5.1	27.6	9.5	22.4				
Hermetia								
Batch1	7.0	40.6	8.2	22.3				
Batch2	48.4	19.7	6.8	10.9				

Mean of three independent analysis,

Nitrogen and anions content in *Tenebrio molitor* L. and *Hermetia illucens* L. frass.

	N _{tot}	NO ₃	SO ₄	Cl		
	g		mg			
	/kg of dry weight					
Tenebrio	22.04	429	2659	3797		
Hermetia	19.1	165	2226	4647		

Mean of three independent analysis.


Mineral content in different batches of Tenebrio molitor L. and Hermetia illucens L. frass.

	Al	В	Ba	Cd	Со	Cr	Cu	Fe	Mn	Мо	Na	Ni	Sr	Pb	Zn
mg/kg of dry weight															
Tenebrio															
Batch 1	95.8	5.1	23.3	<lod< td=""><td><lod< td=""><td>0.8</td><td>20.9</td><td>312.9</td><td>260.7</td><td>2.2</td><td>3044</td><td>2.5</td><td>14.9</td><td>4.7</td><td>137</td></lod<></td></lod<>	<lod< td=""><td>0.8</td><td>20.9</td><td>312.9</td><td>260.7</td><td>2.2</td><td>3044</td><td>2.5</td><td>14.9</td><td>4.7</td><td>137</td></lod<>	0.8	20.9	312.9	260.7	2.2	3044	2.5	14.9	4.7	137
Batch 2	54.2	6.2	23.4	0.5	0.2	0.5	16.3	387.6	226.6	1.1	306	2.8	16.8	5.2	135
Batch 3	58.3	20.1	25.6	0.4	1.5	8.0	18.0	220.0	232.7	1.8	115	3.6	20.6	6.1	137
Her metia Properties															
Batch 1	601	5.7	22.3	<lod< td=""><td><lod< td=""><td>2.27</td><td>18.48</td><td>724</td><td>106.21</td><td>2.44</td><td>381.3</td><td>3.62</td><td>27.4</td><td>5.00</td><td>115.56</td></lod<></td></lod<>	<lod< td=""><td>2.27</td><td>18.48</td><td>724</td><td>106.21</td><td>2.44</td><td>381.3</td><td>3.62</td><td>27.4</td><td>5.00</td><td>115.56</td></lod<>	2.27	18.48	724	106.21	2.44	381.3	3.62	27.4	5.00	115.56
Batch 2	5764	64.6	50.0	0.4	4.0	11.1	50.2	4210	214.7	2.2	2435	8.6	25.1	8.4	168.3
Mean of three independent analysis; <lod =<="" detection="" limit.<="" td=""><td>*</td><td>PARTINERS HIP FOR RESEA IN THE MEDITER</td></lod>								*	PARTINERS HIP FOR RESEA IN THE MEDITER						

(Data by CNR-ISPA)

Incubation experiments

Laboratory

With **frass** (Control, 0.25%, 0.5%, 0.75%, and 1% soil); Two **soils**: (a) Velestino, and (b) sandy With **chicken manure** (Control, 2.5%, 5%); Two **soils**: Velestino, and Larissa (sandy) soils

Step 2 - Preliminary tests on plants

(carried on by CNR, UTH, SERIDA, USMS)

To evaluate potential phytotoxic effects of insect frass and poultry manure in environmental controlled conditions.

Germination test Plant growth test in pots

Greenhouse

Vegetable species tested:
(Brassica oleracea var. Viridis,
Lactuca sativa and Phaseolus
vulgaris var. Verdina).

Growth chamber

to assess the effects of increasing rates of insect frass on physiology and agronomic performances of local varieties of **rapini** and **tomato**.

Ex.: Use insect frass as a substitute for chemical fertilization for growing rapini and mizuna.

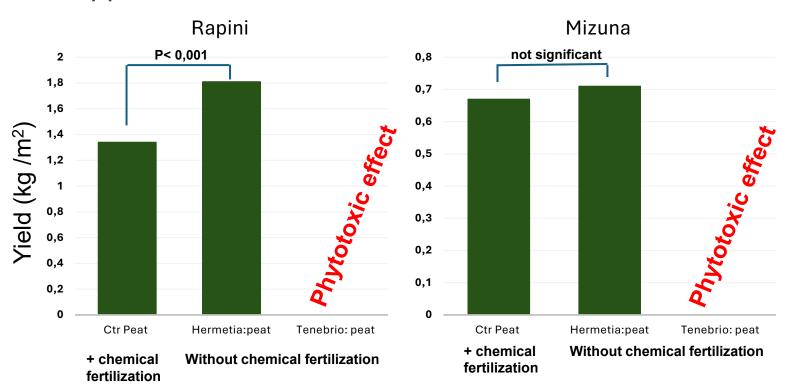
Treatments:

- Peat (+ chemical fertilization) common agronomic practices
- Hermetia frass:peat (50:50 w/w) Without chemical fertilization
- Tenebrio frass:peat (50:50 w/w) Without chemical fertilization

Experimental Design: randomized block with 3 replications

Without chemical fertilization

Phytotoxic effect


(+ chemical fertilization)

Crop performance

Data are expressed as mean (n = 9).

Session 25: Project session ADVAGROMED

Step 3 - Agronomic trials

(carried on by CNR, UTH, SERIDA, USMS across Italy, Greece, Spain, and Morocco)

Session 25: Project session ADVAGROMED

CNR, UNITO - Italy

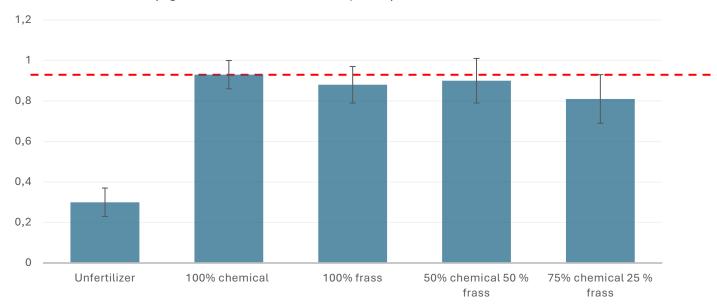
Open field agronomic trials*			
Tomato: spring-summer period 2023	First trial was performed growing the local variety		
	"Regina"		
Brassica: autumn-winter	Second trial was performe		

Brassica: autumn-winter	Second trial was performed
period 2023-2024	using local variety of rapini cv.
	"Novantina".
Tomato: spring-summer	Third trial was performed

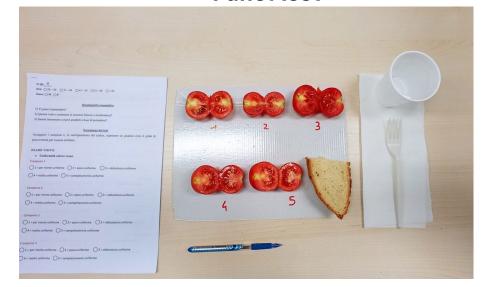
Tomato: spring-summer	Third trial was performed
period 2024	growing the local variety
	"Regina".

9 treatments arranged in a randomized block design with three replication. Tenebrio molitor frass and poultry manure used as biofertilizers

*The same experimental design and plot placement is maintained to assess a possible residual fertilization effect of TM frass and poultry manure.



Rate of Nitrogen (N) fertilizer as reference: 130 kg/ha according to Apulia region Official Bulletin n. 38 31/03/2022



Crop performance and nutritional quality

Yield (kg of tomato fresh fruit/plant)

Panel test

In tomatoes, the use of TM frass did not result in variations in the following nutritional parameters: color, ° Brix, titratable acidity.

Session 25: Project session ADVAGROMED

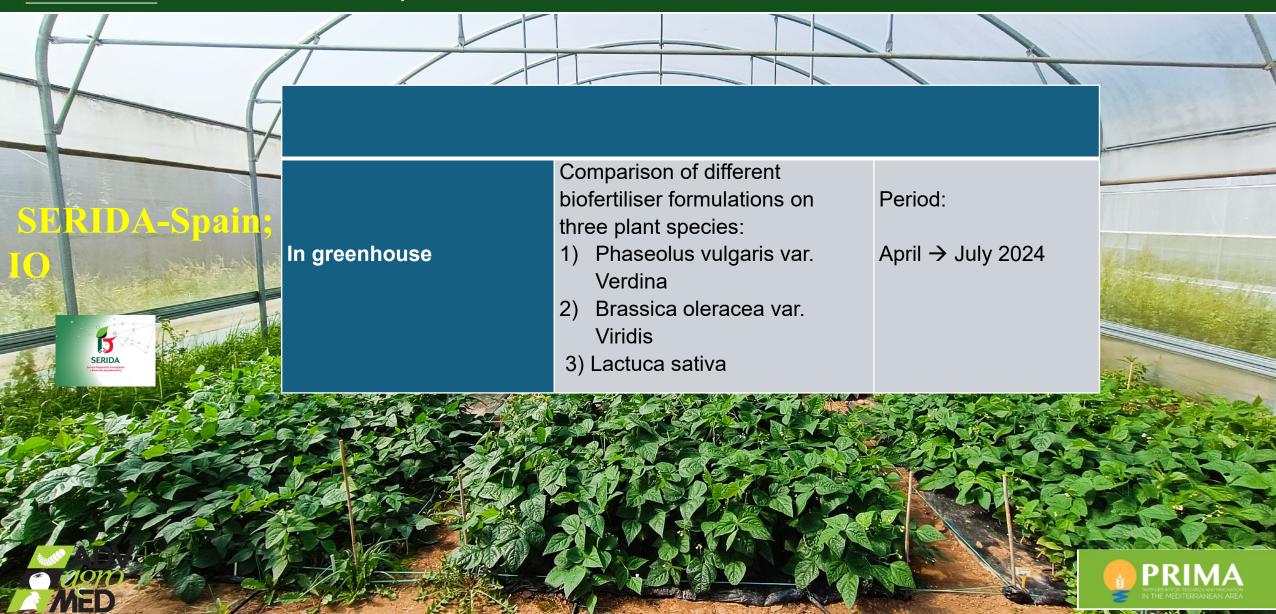
Jak - Gr THESSALY

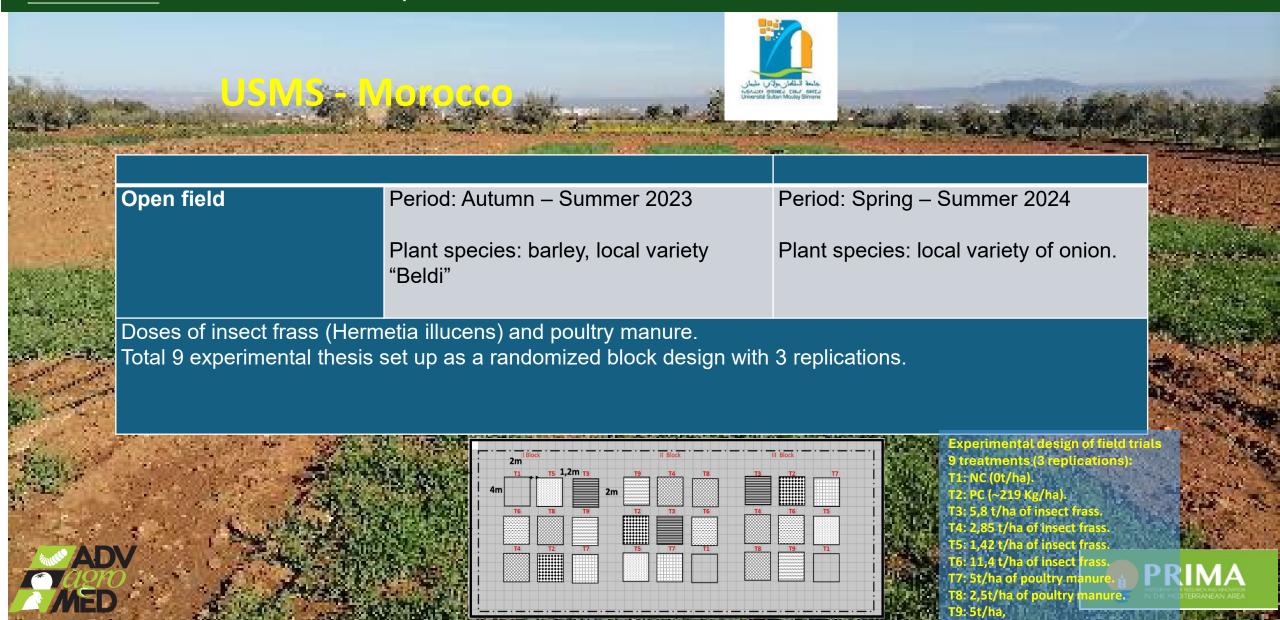
Open field agronomic trials on pepper and eggplant local varieties

Period: Spring – Summer 2023 Period: Spring-Summer 2024.

Two local varieties of pepper, Capsicum annuum cvs. **Bachovitiki and Florinis** grown in two soils (a mediumto-heavy textured soil & a

sandy one) in 15 L pots in


outdoor conditions.


Frass and poultry manure were added at increasing rates and compared with two control treatments (positive control represented by commercial chemical fertilizers; negative control: no inputs).

Two local varieties of eggplants, Tsakoniki and Langada, grown using the same treatments and soils, and the same set of growth and functional measurements will be performed.

Session 25: Project session ADVAGROMED

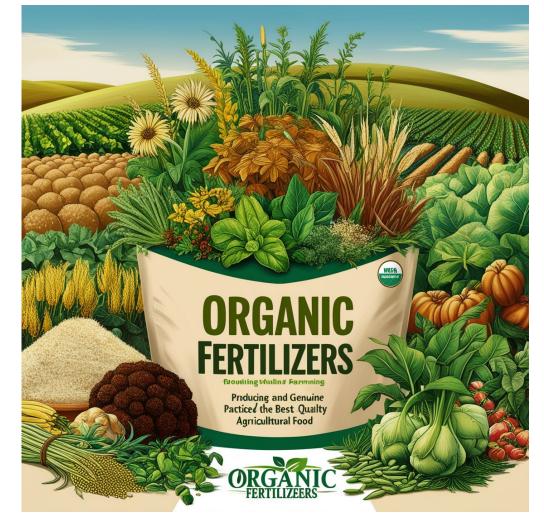
DIL supported by UNITO, CNR, SERIDA, IO, UTH, USMS

Data collection for environmental and economic impacts analysis and consumer acceptance of insect-based agricultural practices

Collection of experimental trials data through questionnaires.

Datasets for

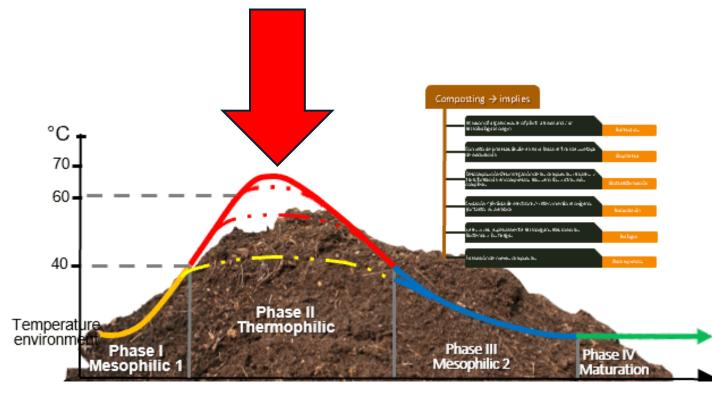
Insects rearing
Poultry rearing
Slaughterhouse
Agricultural practices



Conclusions

Insect frass and poultry manure, as organic fertilizer, could replace mineral fertilizers for growing a variety of vegetables. No significant differences in yield or quality were observed compared to the control (chemical fertilizer).

Tenebrio frass may exhibit phytotoxic effects at high application rates (high quantity of N in the form of NH4?????)



Alternative to thermal treatment in an oven (70 °C 1 h, as stated by UE 2021/1925)

Considering the increasing cost of energy, we are actively working on the development of an alternative method for sanitizing insect frass.

ISTITUTO DI SCIENZE DELLE PRODUZIONI ALIMENTARI

Improving distribution

Powder

The transformation into pellets makes distribution easier and more precise compared to a powdery product.

Solution of frass applied through irrigation (organic fertigation).