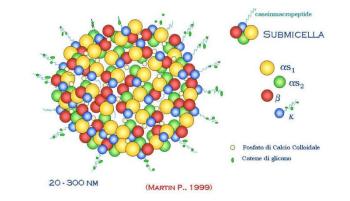
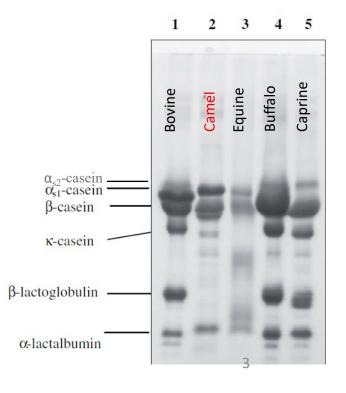
Recent discoveries in two milk proteins genes (CSN1S2 and LALBA) revealed useful markers for gene's assisted selection in camels

N. Letaief, G. Gaspa, A. Pauciullo

Outline

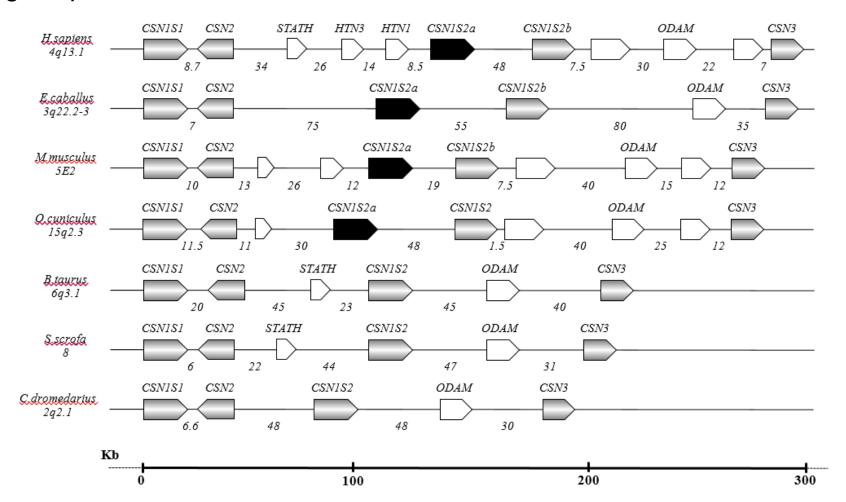
- Why αs2-casein and α-lactalbumin?
- How was analysis done?
- Results and effects on gene expression
- Conclusion




Why the αs2-casein (*CSN1S2* gene)?

The α s2-casein (CN) is one of the three calcium-sensitive phosphoproteins secreted in milk together with the α s1- and β -CN and it is the most hydrophilic of all caseins.

Important for the stability of milk micelles and for dairy processing.


	Milk protein	Camel	Cow	Human
Ca ²⁺ sensible caseins	$\alpha_{\rm S1}$ -Casein	5000	12,000	minute
	α_{S2} -Casein β -Casein	2200 15,000	3000 10,000	minute 4670
	κ -Casein	800	3500	minute
	α-Lactalbumin	3500	1260	3400
Whey-proteins	β -Lactoglobulin	nd	3500	nd
12%	Whey acidic protein	157	nd	\mathbf{nd}
			(Карр	eler et al., 2003)

Caseins have been recognized as a powerful molecular model for evolutionary studies and the knowledge of tag markers within casein genes might play a fundamental role in the understanding of species diversification.

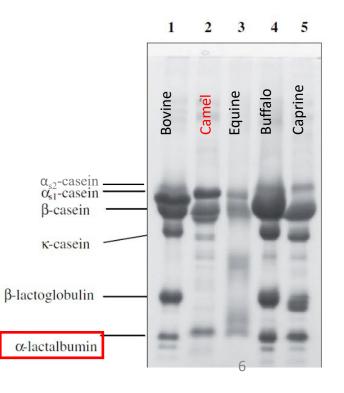
How much do we know about genetic diversity of *CSN1S2* (αs2-CN) in the other farm animals?

7 alleles associated with three different αs2-CN levels (Boisnard et al., 1991; Ramunno et al., 2001a,b; Giambra and Erhardt, 2011).

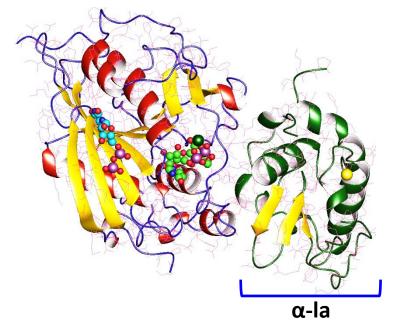
4 variants A, B, C, and D have been found (Farrell et al., 2004; Ibeagha-Awemu et al., 2007).

8 alleles have been identified (Cosenza et al., 2021).

In dromedary and bactrian camels, a series of alternative splicing variants with 2 non allelic variants (UP1 and UP2) have been recently described by Ryskaliyeva et al. (2019) that reported a deep characterization of milk protein in Old World camelids accomplished by LC-ESI-MS.

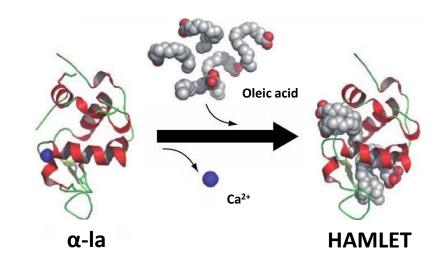


Almost 3 times higher than the concentration found in cow milk, but very similar to that in human milk

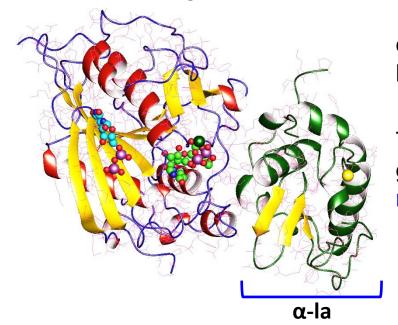

If we refer to complete protein pattern, camel milk is more similar to human milk than cow's milk:

- ➤ Significantly higher concentrations of β-CN (~65%)
- ➤ Lower amounts of k-CN
- > Lack of β-lactoglobulin

	Milk protein	Camel	Cow	Human
Ca ²⁺ sensible caseins	$\alpha_{\rm S1}$ -Casein	5000	12,000	minute
	α_{S2} -Casein	2200	3000	minute
	β -Casein	15,000	10,000	4670
	κ -Casein	800	3500	minute
	α -Lactalbumin	3500	1260	3400
Whey-proteins	β-Lactoglobulin	nd	3500	nd
12%	Whey acidic protein	157	nd	nd
			(Карр	eler et al., 2003)

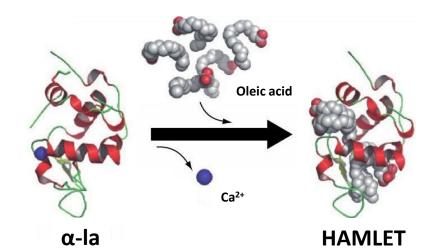


α-lactalbumin belongs to the lysozyme superfamily that also includes lysozymes c and calcium-binding lysozymes (Nitta et al., 1989)


The key function of this protein is to **facilitate lactose synthesis** by the galactosyltransferase component of the enzyme system, serving as **regulatory subunit**

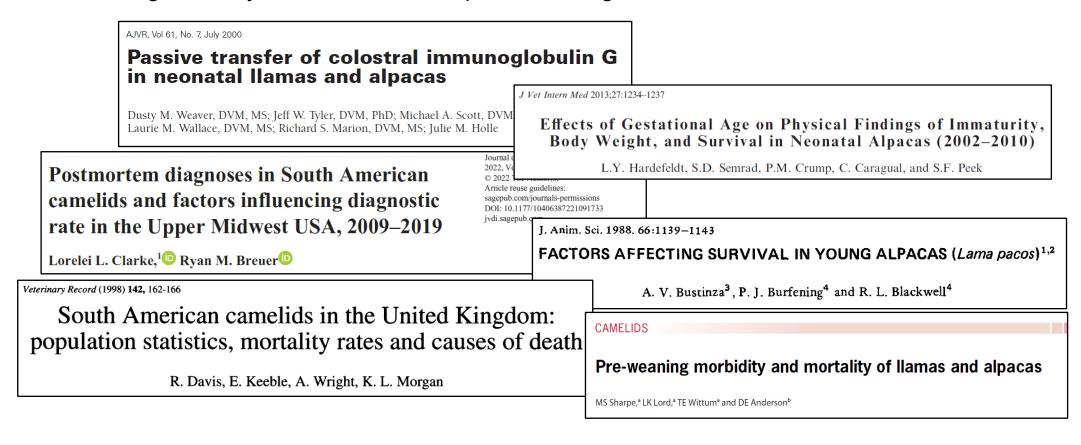
Other biological function have been demonstrated for α -La

- Immune modulation (Cross and Gill, 2000)
- Gastric protection (Matsumoto et al., 2001)
- Stress reduction (Markus et al., 2002)
- Antimicrobial activity (Madureira et al., 2007)
- Human Alpha-lactalbumin Made LEthal to Tumor cells HAMLET (Svensson et al., 1999; 2000; Pettersson et al., 2006; Uversky et al., 2017)



α-lactalbumin belongs to the lysozyme superfamily that also includes lysozymes c and calcium-binding lysozymes (Nitta et al., 1989)

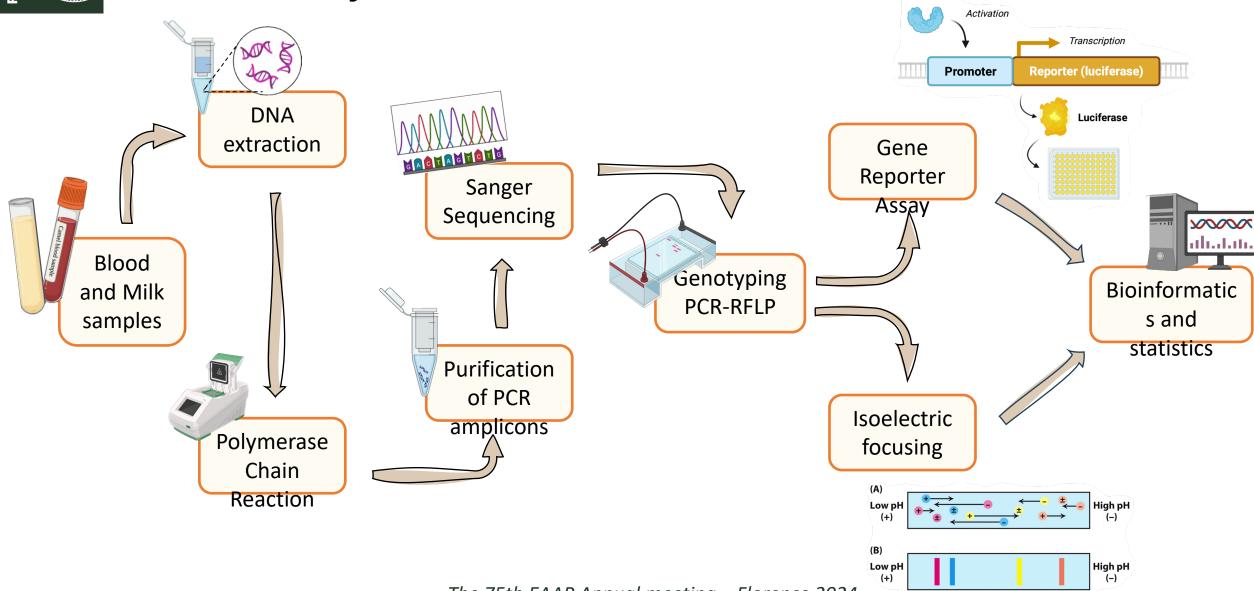
The key function of this protein is to **facilitate lactose synthesis** by the galactosyltransferase component of the enzyme system, serving as **regulatory subunit**


Other biological function have been demonstrated for α -La

- Immune modulation (Cross and Gill, 2000)
- Gastric protection (Matsumoto et al., 2001)
- Stress reduction (Markus et al., 2002)
- Antimicrobial activity (Madureira et al., 2007)
- Human Alpha-lactalbumin Made LEthal to Tumor cells HAMLET (Svensson et al., 1999; 2000; Pettersson et al., 2006; Uversky et al., 2017)

Camelids, in particular SAC, are at increased risk of morbidity and mortality during the first months of life. Pre-weaning mortality rates have been reported to range between 12-16%.

This is a **critical factor** determining survival of the newborn/cria



- Sequencing CSN1S2 and LALBA genes and their flanking regions (promoter and 3'-end) in camels;
- Identifying the regulatory elements (Transcription factors binding sites, microRNA, etc.) that may affect gene expression or change the amino acid composition;
- Identifying markers potentially useful for the selective breeding.

How was analysis done?

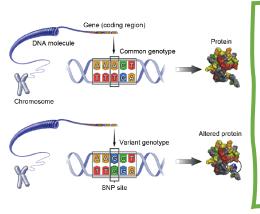
Protein of study

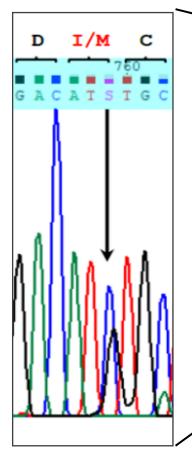
Results CSN1S2 (αs2-casein)

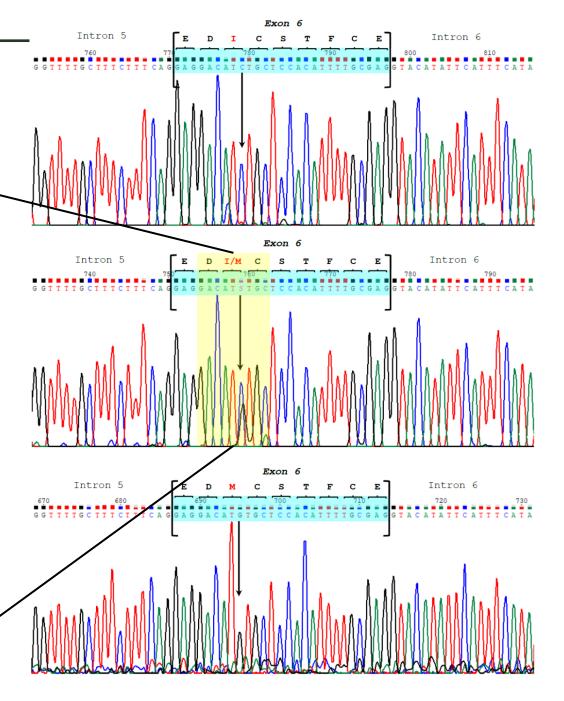
> Bactrian camel: (EMBL ID: OQ720238)


18 SNPs (5 transversions and 13 transitions)

> Dromedary camel: (EMBL ID: OQ720239)


16 SNPs (8 transversions and 8 transitions)


Results CSN1S2 (as2-casein)



First allelic variant found in the Bactrian αs2-casein

SNP g.3639C>G in exon 6 resulted in an amino acid change at position 36 of the mature protein (p.36lle>Met)

Results CSN1S2 (as2-casein)

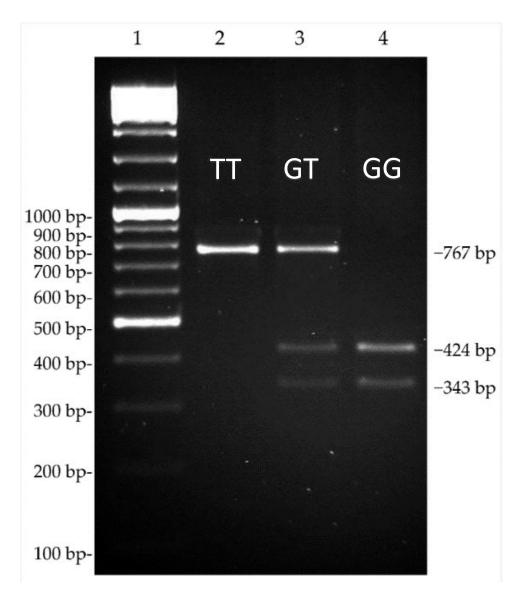
First exonic SNP found in the Dromedary αs2-casein

SNP g. 15110G>T in exon 17

Analysis of the 3'UTR region of the dromedary *CSN1S2* gene (from the first nucleotide of exon 17) to test whether SNP g.15110G>T could influence miRNA binding sites

miRNA Name	miRNA sequence	Seed location	Custom target sequence	Target	Score
				T/T	G/G
<u>hsa-miR-298</u>	AGCAGAAGCAGGGAGGUUCUCCCA	20	CTTCTGCA	93	87
<u>hsa-miR-4418</u>	CACUGCAGGACUCAGCAG	23	CTGCAGT	83	76
<u>hsa-miR-3158-5p</u>	CCUGCAGAGAGGAAGCCCUUC	22	TCTGCAG	81	65
hsa-miR-548av-3p	sa-miR-548av-3p AAAACUGCAGUUACUUUUGC		GCAGTTT	66	-
<u>hsa-miR-4662a-3p</u>	hsa-miR-4662a-3p AAAGAUAGACAAUUGGCUAAAU		C <u>T</u> ATCTT	52	-

Additional miRNA target sites for the T allele → higher down regulation of *CSN1S2* gene (instead no effect from the G allele).


g.15110G>T mutation affected the seed sequence (CTATCTT) of miRNA 4662a-3p, which is the short sequence that allows the miRNA to act on the gene.

Results CSN1S2 (αs2-casein)

		Genotypes			Allele fr	equency
	TT	GT	GG	Total	Т	G
Observed	83	61	13	157	0 700	0.277
Expected	82.05	62.89	12.05	157	0.723	0.277

Lower frequency the G allele \rightarrow stronger chances for a directional molecular selection in favor of this allele that could lead to a more rapid improvement in α s2-casein yield.

Results CSN1S2 (as2-casein)

VS

26 nucleotide differences were found in introns, but none of them appeared to affect the canonical sites of the splicing mechanism.

Promoter: 24 vs 22 Transcription Factors

XTRANSFAC

database

In silico analysis

Transcription Factor	Consensus Motif	Signal Sequence	Strand	Score	C. bactrianus	C. dromedarius
AP-1	NNTGACTCANN	CCTGACTCCCT	+	0.913	-677/-667	-677/-667
TEC1	TNCATTCYWW	TTCATTCCAT	+	0.985	-620/-629	-
AP-4	NNCAGCIGNN	CACAGCIGGI	+	0.989	-591/-582	-591/-582
Oct-1	CWNAWTKWSATRYN	CACAATTAAATATG	+	0.946	-573/-560	-573/-560
Pit-1a	NNGAATATKCANNNN	AATATGAATATTATT	_	0.944	-565/-551	-565/-551
C/EBP-β	RNRTKNNGMAAKNN	AAGTTAAGAAAGTA	+	0.908	-527/-514	-527/-514
AP-4	NNCAGCTGNN	GAGAGCTGAG	_	0.934	-482/-473	-482/-473
C/EBP-β*	RNRTKNNGMAAKNN	GACTTGCATAAG <u>A</u> CT	_	0.909	-453/-439	-
YYI	CCATNTWNNNW	CCATATTTTA	+	0.899	-436/-426	-436/-426
Pit-1a	TGAATAWNWA	TGAATATGAA	+	0.859	-404/-395	-404/-395
Oct-1	CWNAWTKWSATRYN	AATATGAAAAATGT	_	0.847	-402/-389	-402/-389
Oct-1	NNNRTAATNANNN	GTATTAATGAAAT	+	0.870	-378/-366	-378/-366
Oct-1	CWNAWTKWSATRYN	CACATCCAAAATAT	_	0.890	-356/-343	-356/-343
C/EBP-α	NNTKTGGWNANNN	TATTTGTTTAAAG	+	0.901	-333/-321	-333/-321

CSN1S2 gene expression could be different between Bactrians and dromedaries due to differences in the gene promoter.

Full table available at: https://doi.org/10.3390/ani13172805

Results

The intra-species comparison of sequences showed a total of 36 SNP, 26 of which detected within the

LALBA gene.

		C. dro	omedarius .	C. bo	ıctrianus	V.	pacos	L. gl	ama
		Position	Nucleotide (amino acid)						
	Exon 1	680	С	680	С	679	S	679	S
			(p.5Val)		(p.5Val)		(p.5Val)		(p.5Val)
	Intron 1	836	T	836	T	835	Y	835	T
	Exon 2	1160	T	1161	T	1159	Y	1159	T
			(p.54Glv)		(p.54Gly)		(p.54Gly)		(p.54Gly)
	ĺ	1217	R	1218	G	1216	G	1216	G
			(p.73Gln)		(p.73Gln)		(p.73Gln)		(p.73Gln)
		1230	A	1231	A	1229	R	1229	R
			(p.78Ile)		(p.78Ile)		(p.78Ile>Val)		(p.78Ile>Val)
	Intron 2	1532	С	1533	C	1518	Y	1518	Y
-		1562	T	1563	T	1548	T	1548	Y
LALBA		1636	С	1637	C	1622	Y	1622	Y
Ā		1654	T	1655	T	1640	Y	1640	С
7		1778	T	1779	T	1764	Y	1764	T
	Intron 3	1942	T	1943	T	1928	T	1928	Y
		2060	G	2061	G	2046	R	2046	G
	Ì	2063	T	2064	T	2049	Y	2049	T
	ĺ	2065	С	2066	С	2051	С	2051	S
	ĺ	2153	С	2154	С	2139	Y	2139	С
		2168	С	2169	С	2154	Y	2154	Т
		2237	G	2238	G	2223	K	2223	G
		2284	G	2285	G	2270	R	2270	G
	Exon 4	2524	T	2525	T	2510	W	2510	W
		2642	С	2642	С	2628	Y	2628	Y

 1 SNP (3.84%) was detected in dromedary camel

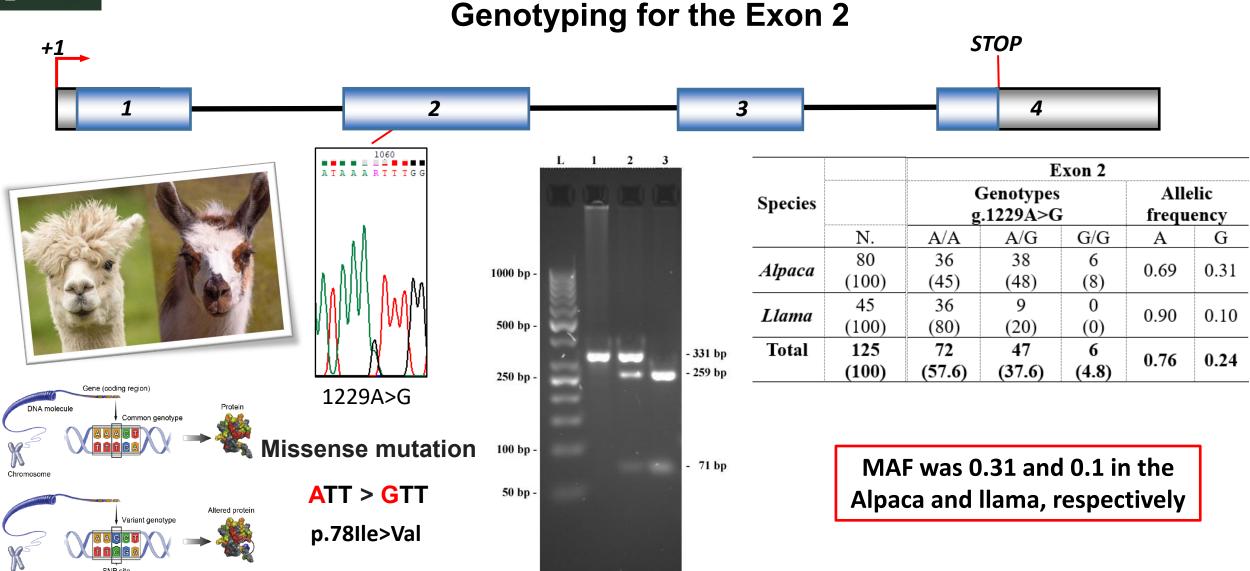
Note: W=A/T, Y=C/T; R=A/G; S=C/G, K=G/T

The 75th EAAP Annual meeting – Florence 2024

Results

The intra-species comparison of sequences showed a total of 36 SNP, 26 of which detected within the LALBA gene.

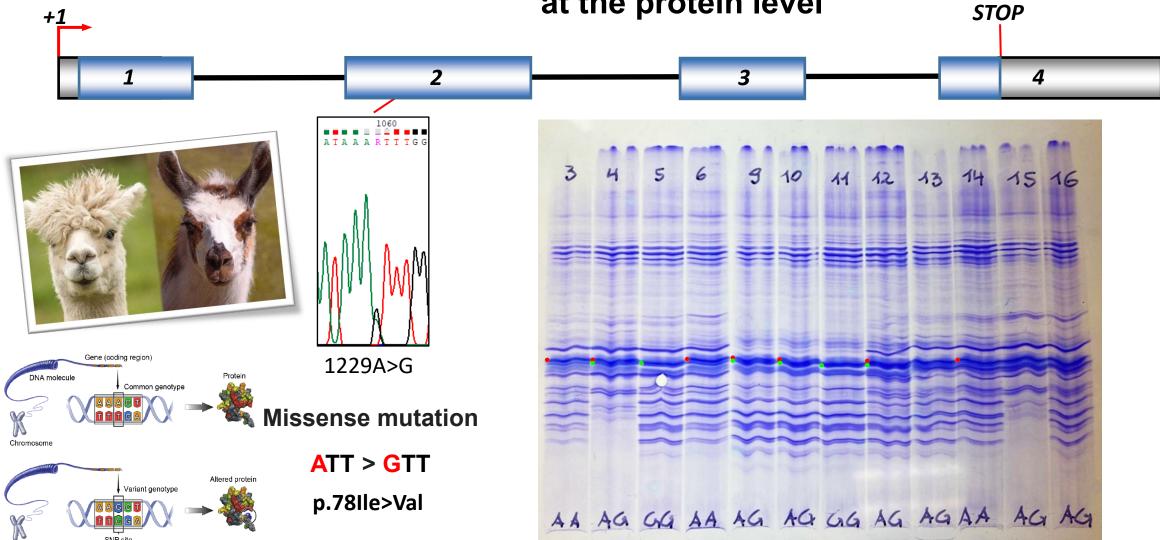
		C. dro	omedarius	C. bo	actrianus	V.	pacos	L. gj	ama
		Position	Nucleotide (amino acid)						
	Exon 1	680	С	680	С	679	S	679	S
			(p.5Val)		(p.5Val)		(p.5Val)		(p.5Val)
	Intron 1	836	T	836	T	835	Y	835	T
	Exon 2	1160	T	1161	T	1159	Y	1159	T
			(p.54Gly)		(p.54Gly)		(p.54Gly)		(p.54Gly)
		1217	R	1218	G	1216	G	1216	G
	ĺ		(p.73Gln)		(p.73Gln)		(n 73Gln)		(p.73Gln)
		1230	A	1231	A	1229	R	1229	R
	Ì		(p.78Ile)		(p.78Ile)		(n 7811e>Val)		(n.78Ile>Val)
	Intron 2	1532	С	1533	C	1518	Y	1518	Y
4		1562	T	1563	T	1548	T	1548	Y
LALBA		1636	С	1637	С	1622	Y	1622	Y
Ā		1654	T	1655	T	1640	Y	1640	С
7		1778	T	1779	T	1764	Y	1764	T
	Intron 3	1942	T	1943	T	1928	T	1928	Y
		2060	G	2061	G	2046	R	2046	G
	İ	2063	T	2064	T	2049	Y	2049	T
	ĺ	2065	С	2066	С	2051	С	2051	S
		2153	С	2154	С	2139	Y	2139	С
		2168	С	2169	С	2154	Y	2154	Т
		2237	G	2238	G	2223	K	2223	G
	Ì	2284	G	2285	G	2270	R	2270	G
	Exon 4	2524	T	2525	T	2510	W	2510	W
		2642	С	2642	С	2628	Y	2628	Y


 25 SNP (96.15%) were found in SAC

g.1229A>G
First allelic variant
p.78Ile>Val

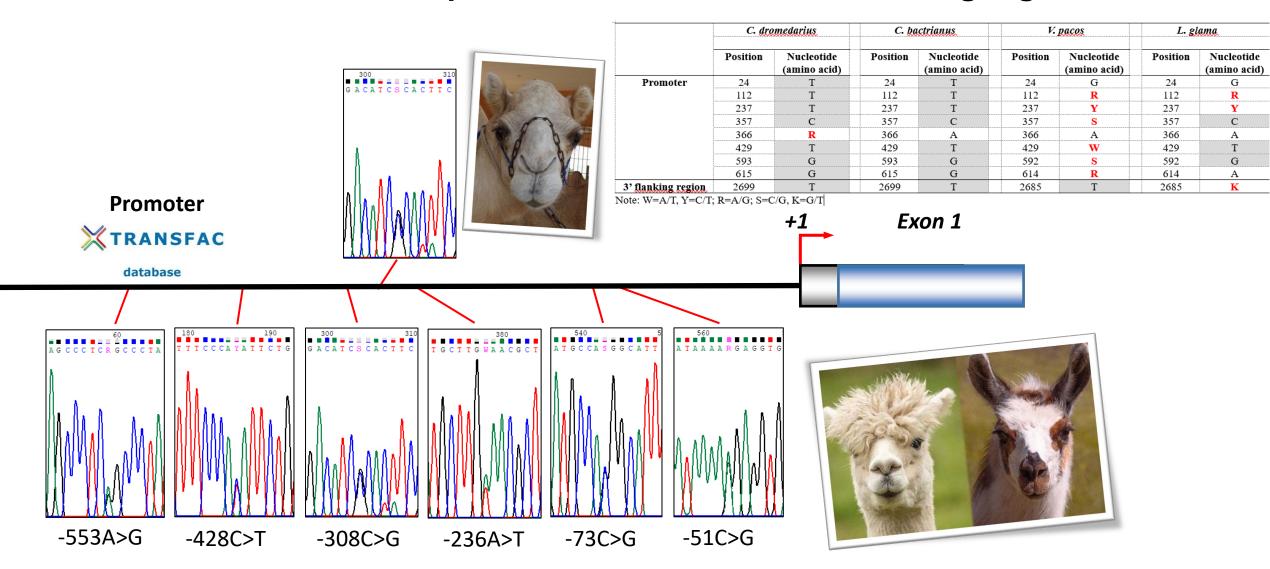
Note: W=A/T, Y=C/T; R=A/G; S=C/G, K=G/T

The 75th EAAP Annual meeting – Florence 2024



The 75th EAAP Annual meeting – Florence 2024

Iso-Electro focusing of skimmed alpaca milk confirmed the polymorphis at the protein level stop


The inter-species comparison showed 86 additional markers as showed in the table

	Position	Mucleotide (amino acid)	Position	Nucleotide (amino acid)	Position V.	Nucleotide (amino acid)	L. g. Position	Ama Nucleoti (amino ac
Promoter	2.4	(amino acid)	24	(amino acid)	24	(amino acid)	24	(amino ac
	31	A	31 50	A	31 50	G	31 50	G
	50	Ċ	50	Ċ	50	T	50	T
	58	T	58	T	58	C	58	C
	85	A T	85	A T	85	G	85	G
	94	T	94		94	С	94	C
	134	G	134	A	134	A C	134	A C
	140	T	140	T	140		140	C
	205-207	TGC	205-207	TGC	205-207	CAT	205-207	CAT
	211 223	Α	211 223	Α	211 223	T	211 223	T
	223	A	223	A	223	C	223	C
	245 275	<u>T</u>	245	<u>T</u>	245 275	A C	245 275	A C
		T	275	T C		<u>C</u>		T
	280	C	280		280	1	280	
	358-359 394	TG	358-359 394	TG	358-359 394	CA	358-359 394	CA
	394 462	<u></u>	462	ļ	394 462	C G	462	C G
	489	A	489	A	489	G	402	G
	492-493		492-493			C-	492-493	C-
	503	AA G	503	AA G	492-493 502		502	- C-
	507	Ť	507	Ť	506	A C	506	A C
	525	ċ	525	Ċ	524	Ť	524	T
	573		573		522	Ġ	522	Ġ
	585	A T	585	A T	584	Ğ	584	G
	655	Ġ	655	Ğ	654	Ä	654	Ā
Exon 1	763	Δ	763	Δ	762	G	762	G
600001	/05	(p.33Asp)		(p.33Asp)	702	(p.33Gly)		(p.33G
	770	T	770	T	769	C	769	C
1		(p.35Asn)		(p.35Asn)		(p.35Asn)		(p.35As
Intron 1	801		801	A	800	G	800	G
100000 1	825	A T	825	A	824	C	824	C
	830		830		830	G	830	G
	838	A C	838	A C C	837	T	837	T
	966	č	966	č	965	Ť	965	Ť
	968	č	968	č	967	Ť	967	Ť
	1036/1037		1037	A	1035/1036	1	1035/1036	
	1087	G	1088	A G	1086	T	1086	T
	1118	A	1119	A	1117	T C	1117	T C
	1123	T	1124	T	1122	С	1122	C
	1126	С	1124 1127	С	1122 1125	T	1122 1125	T
Exon 2	1240	G	1241	G	1239	T	1239	T
		(p.81Arg)		(p.81Arg)		(p.811le)		(p.8111
	1274	C	1275	C	1273	T	1273	T
		(p.92Cys)		(p.92Cys)		(p.92Cys)		(p.92C)
Intron 2	1326-1327	CC	1327-1328	CC	1325-1326	TT	1325-1326	TT
	1332/1333		1333/1334		1332	T	1332	T
	1339	G	1340	G	1339	C	1339	C
	1370	G	1371	G	1370	A	1370	A
	1396	A T	1397	A T	1396	G	1396	G
	1417	T	1418	T	1417	C	1417	C
	1432	С	1433	С	1432	G	1432	G
	1436-1449	CTAAGAGG	1437-1450	CTAAGAG	1435/1436	-	1435/1436	-
	1452	CTGTTA	1453	GCTGTTA G	1438	Α	1438	A
	1570	G A	1571	A	1556	G	1556	G
	1603	ĉ	1604	ĉ	1589	Ť	1589	T
	1610	,	1611		1596	Ğ	1596	G
	1651	A G	1652	A G	1637		1637	
	1700	T	1701	Ť	1686	A C	1686	A C
	1751	Ċ	1752		1737	Č	1737	C
From 2	1809	C	1810	C	1795	T	1795	
Exon 3	1809	(p.106Asp)	1810	(p.106Asp)	1/93	(p.106Asp)	1/93	(p.106A
	L	(p.100Asp)		(p.100Asp)		(p.100Asp)		(p.100A
	1814	A	1815	A	1800	T	1800	T
		(p.108Lys)		(p.108Lys)		(p.108Ile)		(p.1081i
Intron 3	1875	A C	1876	A	1861	G	1861	G
	1909		1910	T	1895	T	1895	T
	1943	A T	1944	G	1929	G	1929	G C
	2008		2009	T	1994	C	1994	
	2025	T	2026	T	2011	С	2011	С
	2140	C T	2141 2155	C	2126 2140	T C	2126 2140	T C
	2154	Ţ	2155	T	2140			
	2302	Ţ	2303 2315	Ţ	2288 2300	G	2288	G
	2314	A	2315	G	2300 2521	A	2300	A
Exon 4	2535 2565	A T	2536 2566	C	2521 2551	C C	2521 2551	C
				T				
	2622 2643	T	2622/2623	Ā	2608	T	2608	T
		A G	2643	A G	2629	G	2629	G
	2672		2672		2658	A	2658	A
21.5	2676-2677	TG	2676-2677	TG	2662-2663	CT	2662-2663	CT
3' flanking	2686	T A	2686	ľ	2672	C T	2672	C T
0000000	2696		2696	A	2682		2682	
region	2730	A A C	2730	A	2716	G	2716	G
region	2784	A	2784 2787	A C	2770 2773	G	2770 2773	G
region	2777	C	2787		2773	G	2773	G
region	2787			G	2822	A AACCACCT	2822	A AACCAC
region	2787 2836	A			2831-2845	AACCACCT	2831-2845	AACCAC
region	2787	A AACCACCT	2844/2845	-	2021 2012			
region	2787 2836 2845-2859	A AACCACCT GACTTAT	2844/2845	-		GACTTAT		GACTT
region	2787 2836 2845-2859 2886	GACTTAT A	2844/2845 2871	A	2872	GACTTAT G	2872	GACTT. G
region	2787 2836 2845-2859 2886 2896-2900	A AACCACCT GACTTAT A AGTAA	2844/2845 2871 2881-2885	A AGTAA	2872 2881/2882	GACTTAT G -	2872 2881/2882	G -
region	2787 2836 2845-2859 2886 2896-2900 2925	GACTTAT A	2844/2845 2871 2881-2885 2910	A AGTAA T	2872 2881/2882 2906	GACTTAT	2872 2881/2882 2906	G - A
region	2787 2836 2845-2859 2886 2896-2900 2925 3033	GACTTAT A	2844/2845 2871 2881-2885 2910 3018	A AGTAA T G	2872 2881/2882 2906 3014	GACTTAT G - A T	2872 2881/2882 2906 3014	G - A T
region	2787 2836 2845-2859 2886 2896-2900 2925	GACTTAT A	2844/2845 2871 2881-2885 2910	A AGTAA T	2872 2881/2882 2906	GACTTAT G -	2872 2881/2882 2906	Ā

9 SNP found in the promoter and one in the 3' flanking region

The 75th EAAP Annual meeting – Florence 2024

Promoter +1 Exon 1

Table 5. List of transcription factors binding sites detected in the 5'-flanking regions of LALBA in domestic camelids¹

		Transcription factor binding site					
Position	Consensus motif $5' \rightarrow 3'$	Old World camel	New World camel	Shared			
$-580/-572$ $-558/-549^2$ $-323/-314^2$ $-314/-305$	wwTyCCTAwT CCCkCsGCmy rGsCTGGGGm ACwTCCTsyk	MCM1 PEA-3		${ m SP1}^3 \ { m AP2-} lpha$			
-183/-174 $-150/-141$	GGAAArkGrm syTGGCmGsC	NF-1	ICSBP/ISGF-3	1			
-102/-93 $-80/-71$ $-62/-52$ $-57/-48$ $-11/-2$	CCTCyTCCys rrkGsCAGGG sATGmATrwA ATAAAArrnG wksmAGCCAA		SP1 NF-1	YY1 PIT-1A TATA			

 $^{^{1}}k = G/T; m = A/C; n = A/C/G/T; r = A/G; s = C/G; w = A/T; y = C/T.$

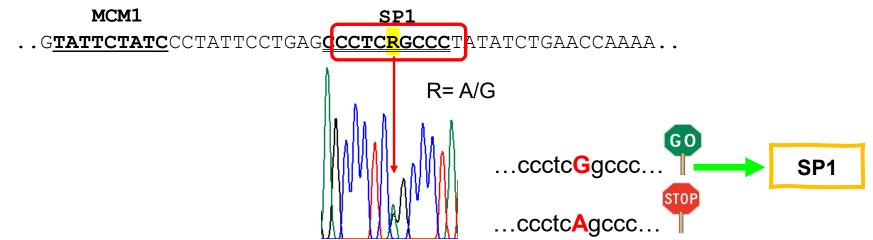
At least 11 main consensus sequences for TF were found.

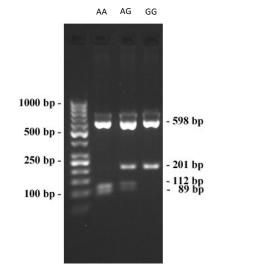
Five were motifs shared among the 4 investigated camelids and can be considered as essential for gene expression.

 $^{^2\}mathrm{SP1}$ and AP2- α positions in New World camels are -557/-548 and -313/-322, respectively.

 $^{^3}$ Presence of the SP1 binding site in New World camelids is genotype dependent due to the polymorphism g.112A>G.

Promoter +1 Exon 1

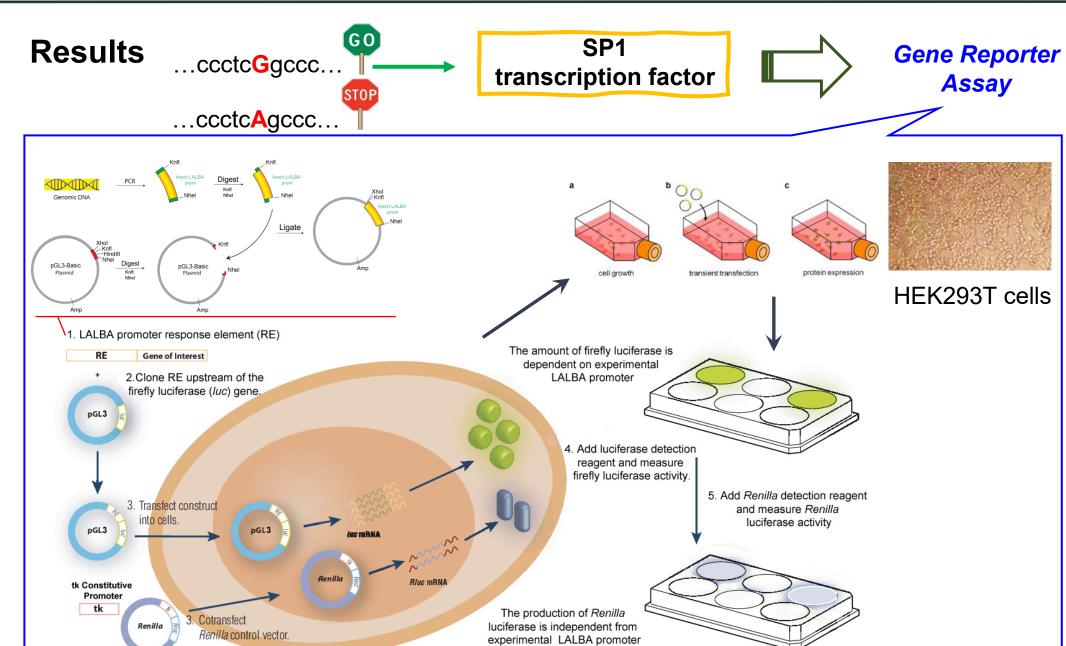

Table 5. List of transcription factors binding sites detected in the 5'-flanking regions of LALBA in domestic camelids¹

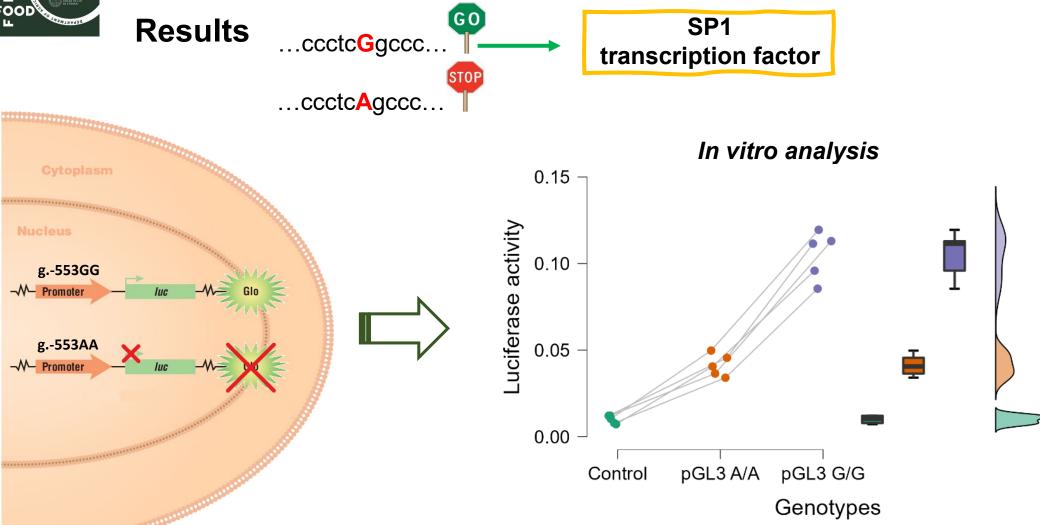

		Transcription factor binding site					
Position	Consensus motif $5' \rightarrow 3'$	Old World camel	New World camel	Shared			
- 580/ - 572	wwTvCCTAwT	MCM1					
$-558/-549^2$	CCCkCsGCmy			$\mathrm{SP1}^3$			
$-323/-314^{2}$	rgsCTGGGGm			AP2-α			
-314/-305	ACwTCCTsyk	PEA-3					
-183/-174	GGAAArkGrm		ICSBP/ISGF-3				
-150/-141	syTGGCmGsC	NF-1					
-102/-93	CCTCyTCCys		SP1				
-80/-71	$\operatorname{rrkGsCAGGG}$			YY1			
-62/-52	sATGmATrwA			PIT-1A			
-57/-48	${ m ATAAAArrnG}$			TATA			
-11/-2	wksmAGCCAA		NF-1				

 $^{^{1}}k = G/T; m = A/C; n = A/C/G/T; r = A/G; s = C/G; w = A/T; y = C/T.$

The SNP g.-553A>G creates a putative binding site for the *TF* SP1, genotype dependent in alpacas. This motif is a well-known enhancer element for the basal expression of many genes, including milk protein genes.

SNP g	553A>0	Allele f	requency		
AA	AA AG GG TOT			A	G
41.25	41.25	17.50	100	0.62	0.38




 $^{^{2}}$ SP1 and AP2- α positions in New World camels are -557/-548 and -313/-322, respectively.

³Presence of the SP1 binding site in New World camelids is genotype dependent due to the polymorphism g.112A>G.

The G variant of this SNP enhances the promoter activity of the alpaca *LALBA* (p<0.01) and induces the SP1 binding, which consequently up-regulates *in vitro* the luciferase gene expression.

Conclusion

- ✓ A considerable number of SNPs has been found in CSN1S2 and LALBA genes and their promoters, especially in the SAC that confirms an higher level of diversity of these genomes compared to those of Old World camels.
- ✓ We identified the first allelic variants at protein level (p.36lle>Met in Bactrians and p.78lle>Val in SAC) as a result of a SNPs (g.3639C>G and g.1229A>G) found in the exon 6 and exon 2 in CSN1S2 and LALBA genes, respecitively.
- ✓ In the dromedary, the SNP g.15110G>T, found in the exon 17 of CSN1S2, shows promise to functionally impact miRNA 4662a-3p. The low frequency of the g.15110G allele offers an opportunity for genetic improvement through molecular-assisted selection.
- ✓ A gene reporter assay demonstrated higher luciferase expression as result of a new SP1 binding site generated by the G variant of the SNP g.-553A>G found in the LALBA promoter.
- ✓ The low frequency of both g.15110G and g.-553G alleles offers an opportunity for genetic improvement through molecular-assisted selection.
- ✓ The results here obtained provide profitable information for the **genetic progress** of domestic camels in milk proteins essential for **newborn/cria resilience**, **human nutrition and dairy purposes**.

Conclusion

Full manuscripts are available:

Pauciullo, A.; Versace, C.; Gaspa, G.; Letaief, N.; Bedhiaf-Romdhani, S.; Fulgione, A.; Cosenza, G. Sequencing and characterization of αs2-casein gene (*CSN1S2*) in the Old-World camels have proven genetic variations useful for the understanding of species diversification. *Animals* 2023, 13, 2805. https://doi.org/10.3390/ani13172805

Pauciullo, A.; Versace, C.; Miretti, S.; Giambra I.J.; Gaspa, G.; Letaief, N.; Cosenza, G. Genetic Variability among and within domestic Old and New World camels at the α-lactalbumin gene (LALBA) reveals new alleles and polymorphisms responsible for differential expression. *Journal of Dairy Science* 2024, 107, 1068-1084. https://doi.org/10.3168/jds.2023-23813

My research group

Acknowledgments

This work was financially supported by:

Thank you very much for your attention

University of Turin

Dip. Agricultural, Forest and Food Sciences

Prof. Dr. Alfredo Pauciullo

Genetics and Cytogenetics

Largo Paolo Braccini 2 - 10095 Grugliasco (Turin) - Italy Tel. +39 011 6708598 alfredo.pauciullo@unito.it www.disafa.unito.it

