
Can we breed cattle with more efficient rumen microbiome?

Leluo Guan¹, Tim McAllister², Ángela Cánovas³

¹Faculty of Land and Food Systems, University of British Columbia, BC, Canada
²Lethbridge Research Center, AAFC, AB, Canada
³Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, ON, Canada

The 75th EAAP Annual Meeting, Florence, Italy September 1, 2024

Rumen Microbiome

Feed

Bacteria (10^{10} - 10^{11} cells/ml): ferment fiber, starch, pectin, protein, and so on

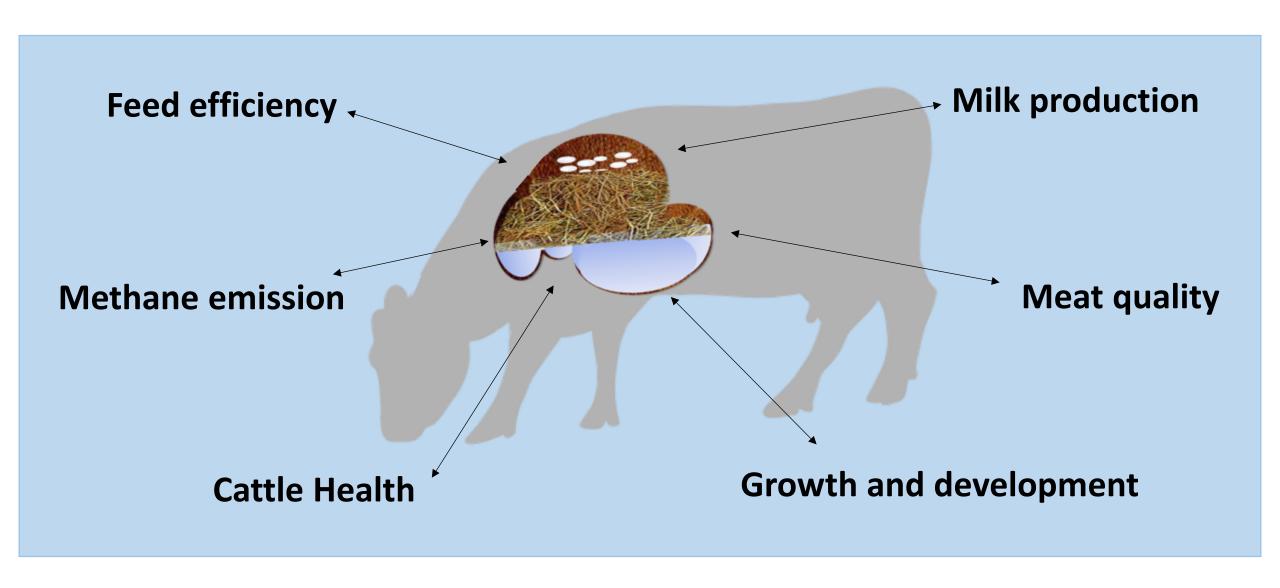
Bacteria

Archaea Archaea (methanogens) (10⁷ cells/ml): convert H₂ and CO₂ to CH₄

VFAs Protozoa Microbial proteins Vitamins

Rungi

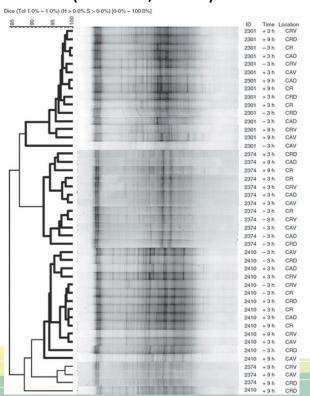
Protozoa (10⁴-10⁶ cells/ml): degrade fiber and protein

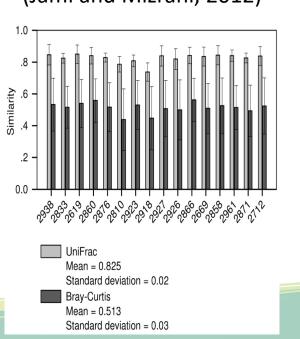

VFA 2.0-6.0 kg

0.75-2.0 kg microbial cells 400-850 L gas

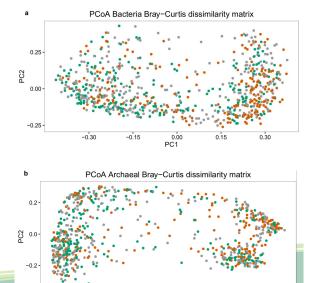
140-290 L CH₄ 260-560 L CO₂

Fungi (10³-10⁶ cells/ml): digest plant fiber and starch

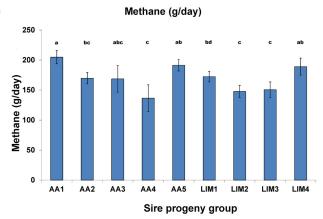

Rumen microbiome and cattle performance


Genetic breeding of rumen/gut microbes?

Individualized rumen microbiota


Larger difference in rumen bacterial community across animals than among sampling locations (Li et al., 2009)

Low similarity observed in the rumen bacterial communities across 16 animals raised under similar housing conditions and diet (Jami and Mizrahi, 2012)


Both bacterial and archaeal communities differed across 750 lactating Holstein cows (Difford et al., 2018)

PC1

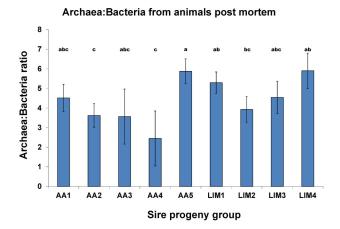
Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

Rainer Roehe¹*, Richard J. Dewhurst¹, Carol-Anne Duthie¹, John A. Rooke¹, Nest McKain², Dave W. Ross¹, Jimmy J. Hyslop¹, Anthony Waterhouse¹, Tom C. Freeman³, Mick Watson⁴e, R. John Wallace²e

Methane (g/kg dry matter intake)

25

a c c abc abc a bc bc a


10


10

AA1 AA2 AA3 AA4 AA5 LIM1 LIM2 LIM3 LIM4

Sire progeny group

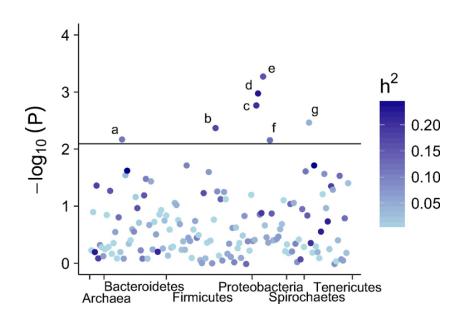
R=0.72 (g/day) R=0.67 (kg/DMI)

R=0.8 (g/day) R=0.65 (kg/DMI)

2016

Archaea:Bacteria ratio as selection criteria for CH4

RESEARCH ARTICLE


Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows

Gareth Frank Difford 1,2*, Damian Rafal Plichta 5,4, Peter Løvendahl 1, Jan Lassen 5,5, Samantha Joan Noel 5, Ole Højberg 5, André-Denis G. Wright 7, Zhigang Zhu 6, Lise Kristensen 1, Henrik Bjørn Nielsen 3,4, Bernt Guldbrandtsen 1, Goutam Sahana 1*

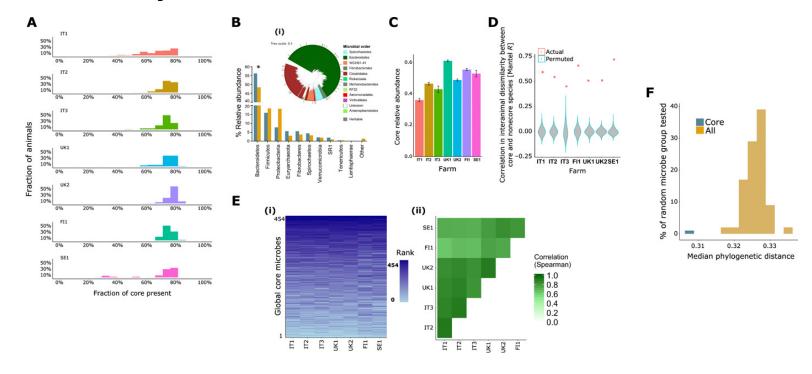
Individual variation in CH₄ production was influenced by individual host (cow) genotype, as well as the host's rumen microbiome composition.

The cumulative effect of all bacteria and archaea on CH₄ production was 13%, the host genetics (heritability) was 21% and the two are largely independent.

Host genetic effects on rumen microbiota/microbiome

2019

SCIENCE ADVANCES | RESEARCH ARTICLE


ORGANISMAL BIOLOGY

A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions

R. John Wallace¹*[†], Goor Sasson²[†], Philip C. Garnsworthy³, Ilma Tapio⁴, Emma Gregson³, Paolo Bani⁵, Pekka Huhtanen⁶, Ali R. Bayat⁴, Francesco Strozzi⁷[‡], Filippo Biscarini⁷[§], Timothy J. Snelling¹, Neil Saunders³, Sarah L. Potterton³, James Craigon³, Andrea Minuti⁵, Erminio Trevisi⁵, Maria L. Callegari⁸||, Fiorenzo Piccioli Cappelli⁵, Edward H. Cabezas-Garcia⁶¹, Johanna Vilkki⁴, Cesar Pinares-Patino⁴, Kateřina O. Fliegerová⁹, Jakub Mrázek⁹, Hana Sechovcová⁹, Jan Kopečný⁹, Aurélie Bonin¹⁰, Frédéric Boyer¹⁰, Pierre Taberlet¹⁰, Fotini Kokou², Eran Halperin¹¹, John L. Williams^{7#}**, Kevin J. Shingfield⁴**^{††}, Itzhak Mizrahi²***

CH4 emission

A small number of heritable core microbes explained experimental variables and host phylotypes to a higher extent compared to other rumen microbes, which may server as the target for improving feed efficiency and methane mitigation

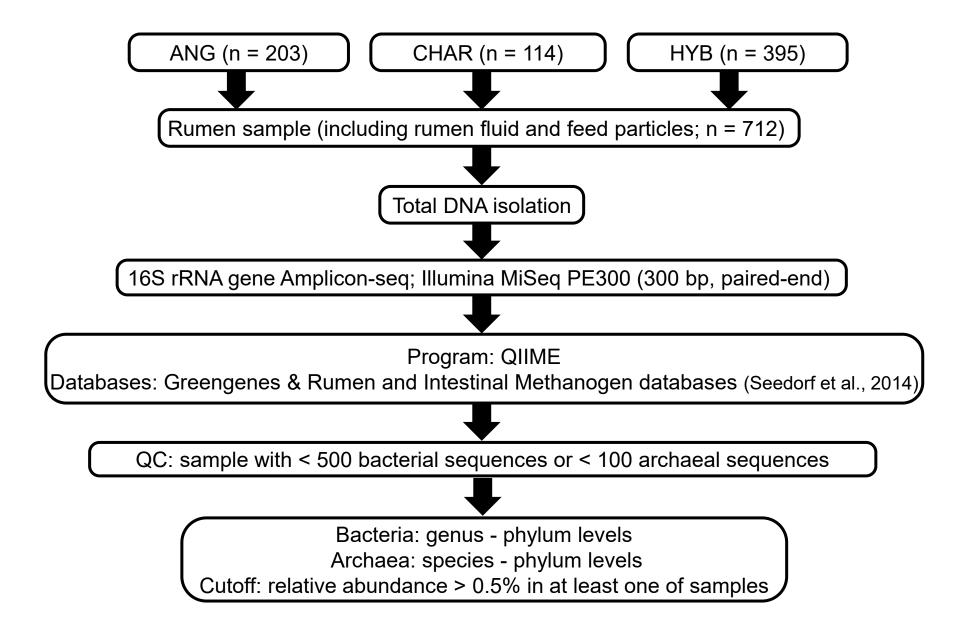
Host genetic effects on rumen microbiota/microbiome in beef cattle

Li *et al. Microbiome* (2019) 7:92 https://doi.org/10.1186/s40168-019-0699-1

Feed efficiency

Microbiome

RESEARCH Open Access



Residual feed intake (RFI)

- RFI: actual feed intake expected feed intake
 - ➤ Dry matter intake, average daily gain, metabolic weight, back fat
- > Independent from body weight and growth
- ➤ Positive RFI (High RFI) → less efficient Negative RFI (Low RFI) → more efficient

Rumen microbial profiles

Genome-wide association studies (GWAS)

Genotyping

➤ Illumina BovineSNP50v2 BeadChip (n = 712)

Quality control and SNP coding

- ➤ Hardy-Weinberg equilibrium
- ➤ Minor allele frequency (MAF) > 5%
- ➤ Genotyping call rate > 90%
- > Imputing missing genotypes

Relationship matrix construction)-> 0, aa -> -1

➤ Genomic relationship matrix (G-matrix) was constructed to represent relationships among individuals.

Host genetic effects on rumen microbiota/microbiome

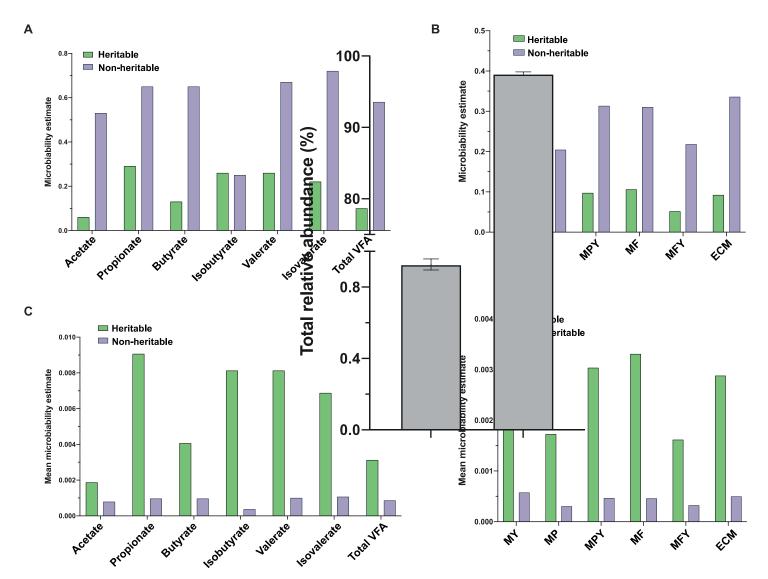
 Some rumen microbial features were heritable; host genetic markers (SNPs) for heritable microbial phylotypes were identified

- > 55 bacterial taxa and 3 archaeal taxa showed moderate heritability (≥ 0.15).
- ➤ 21 members belonging to the phylum *Firmicutes* were heritable.
- ➤ Most members belonging to the phylum *Bacteroidetes* were not heritable.

Genes associated with rumen microbiota and RFI

		Table 2 Ide	ntified bovine S	SNPs asso	ociated with r	umen microbial taxa							
		SNP	Position	Alleles	Gene	Consequence	Associated Taxon	FDR ³	Р	FE ⁴			
		rs109763257	1:155345571	C/T	NC region ¹	NA ²	Spirochaetes (phylum)	0.173	1.20e - 05				
							Spirochaetes (class)	0.190	9.43e-06				
rs110448978	26:37871121	rs43235157 (/ T rs110461771	1:156294225 KCNKT8 2:92080445	A/G C/T	TBC1D5 Downst RAPH1	Intron variant ream variant Intron variant	Ruminococcus (genus) Unclassified [Mogibacte Ruminococcus (genus)	.0.191 riace c 0.164	7.33e-05 9.3.88e-06	DMI US) FCR	0.187	4.40e-06	ADG
		rs29003226	3:51976646	C/G	NC region ¹	NA^2	YRC22 (genus)	0.107	2.53e-06				DMI
		rs41257422	5:6266261	A/G	NC region ¹	NA^2	YRC22 (genus)	0.155	7.33e-06	RFIf			FCR
rs42620822	27:42776720	rs41656119 rs110670001	7:83551608 NC region 10:10930797	on [©]	NC Aegion ¹ NC region ¹	NA ²	Ruminoccus (genus) Spirochaetes (class) BS 11 (family)	0.191 0.006	1.80e-05 1.43e-07		0.196	3.24e-05	
1	••	13110070001	10.10930797	C/ I	TVC TCGTOTT	1.1/.	Unclassified BS11 (genus)	0.006	1.43e-07				
		rs110071335	10:81981544	A/C	SMOC1 K	CNK gene	Ruminococcus (genus)	0.191	1.46e-05				
		rs109402398	12:37678844	C/T	NC region ¹	NA ²	[Paraprevotellaceae] (family)	0.105	4.95e - 06				
		rs110410597	13:28095457	C/T	OPTN	Intron variant	Spirochaetes (phylum)	0.173	2.45e - 05				
			Р	otas	sium T	wo Pore Do	omain Channel	0.190	2.69e-05				
		rs41604961				Intron variant Member 1		0.173	2.45e-05				
			3	ublamily K		Melliper 1	Spirochaetes (class)	0.190	2.69e - 05				
		rs109122489	13:28149879	C/T	MCM10	Intron variant	Spirochaetes (phylum)	0.173	2.45e-05				
			F	Pota	ssium <i>i</i>	channels r	olay a role spilochaetes (class) Spilochaetes (phyllum)	0.190	2.69e-05				
		rs110469969						0.173	2.45e - 05				
				_			ses including	0.190	2.69e-05				
		rs109961459	13:24202640 n	nain [∙]	tenanc	e ^{NA2} of the a	ction potential, [Paraprevotellaceae] (family)	0.111	2.61e-06				
		rs41627213						0.070	1.65e-06				
		rs41911152				•	Orms One Chylum)	0.070	1.64e – 06	DMI			
			S	secretion, os		smotic reg	gulation; and	0.070	1.64e-06				
						`	victivaliales (order)	0.034	8.05e-07				
			IV.	יוו ווע	OVV.		Victivallaceae (family)	0.038	8.92e – 07				
		11070001	26.22407450	2407450 A/C NC resides		N1A 2	Unclassified <i>Victivallaceae</i> (genus)	0.038	8.92e-07				
		rs110728224	26:32497450 	rans		found in R	Spirochaetes (phylum)	0.173 0.140	4.73e-06 3.31e-06				
		rs110448978			•		• • •	0.140	4.40e-06	ADG			
		13110770970	26:37871121rumen©epithelialetiss			เษาเลา แรรน	CS relassifica [mogloucienaceae] (genas)	0.107	7.700 00	DMI			
		42620022	27 42776722	A (C	NG . 1	NA 2		0.106	224 65	FCR			
		rs42620822	27:42776720	A/G	NC region'	NA ²	Spirochaetes (class)	0.196	3.24e-05				

Host genetic effects on rumen microbiota/microbiome in dairy cattle


RESEARCH ARTICLE

Heritable and Nonheritable Rumen Bacteria Are Associated with Different Characters of Lactation Performance of Dairy Cows

Xin-Wei Zang,^a

Key findings

Microbial profiles were generated for 398 mid lactation Holstein dairy cows from a commercial dairy farm

Thirty-two heritable and 674 nonheritable bacterial taxa were identified at species level

Heritable bacteria have low abundnace

The mean microbiability (to reflect a single taxon's contribution) of heritable bacteria was higher: 0.16% to 0.33% for the different milk traits, vs 0.03% to 0.06% for nonheritable bacteria

Genotype-associated heritable rumen bacteria can be a stable microbiota passed to the offspring 8

Xinwei Zang, Huizeng Sun, Mingyuan Xue, Shulin Liang, Le Luo Guan 巫, Jianxin Liu 巫

ISME Communications, ycad020, https://doi.org/10.1093/ismeco/ycad020

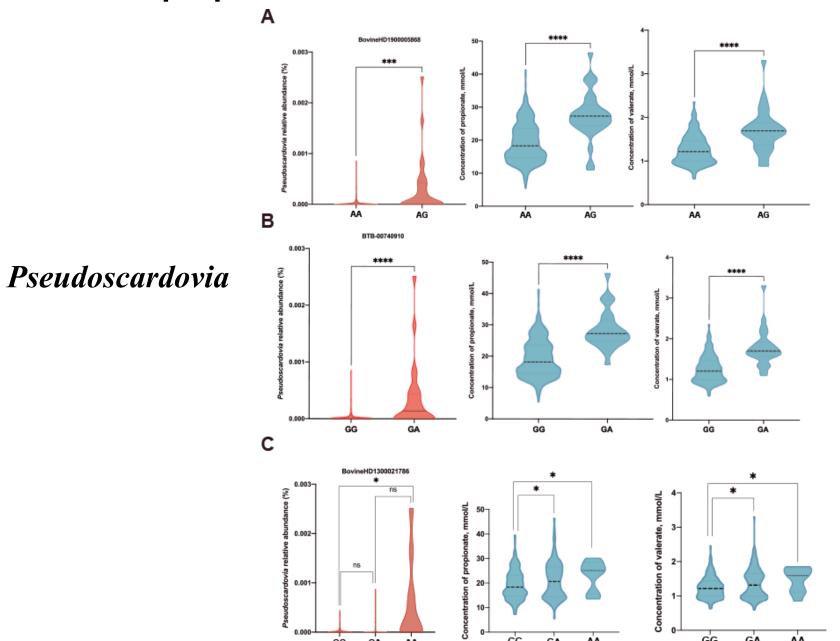
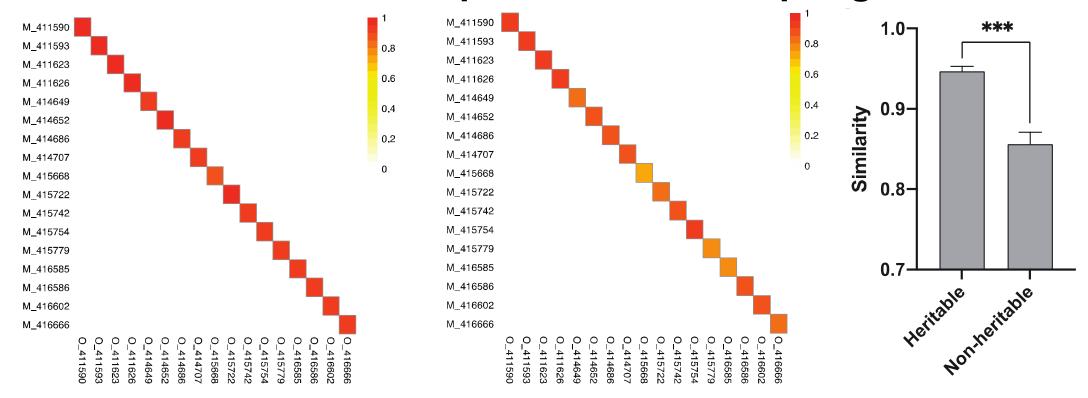

Published: 10 January 2024

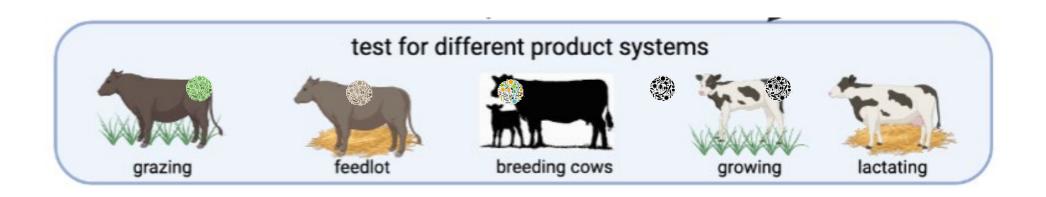
TABLE S3 Identified bovine SNPs influenced heritable rumen microbial taxa abundance


SNPs	Position	Alleles	Gene	Consequence	Associated taxon	P value	FDR ¹
BTB-01532239	14:22781305	A/G	XKR4	intron_variant	p-251-o5(genus)	8.29E-10	7.22E-05
ARS-BFGL-NGS-8960	23:14416017	G/A	LRFN2	intron_variant	p-251-05(genus)	3.56E-08	1.03E-03
BTB-00740910	19:17720890	G/A	PSMD11	intron_variant	Pseudoscardovia(genus)	6.26E-12	2.73E-07
BovineHD1900005868	19:19945005	A/G	SLC13A2	intron_variant	Pseudoscardovia(genus)	1.20E-09	2.62E-05
BovineHD1300021786	13:74704084	G/A	ZNF335	intron_variant	Pseudoscardovia(genus)	7.05E-07	3.83E-03

¹For each microbial taxonomic feature, P value was adjusted into genome-wide false discovery rates (FDRs) using the Benjamini-Hochberg method. Associations with $P_{adj} < 0.01$ were considered as significant, and associations with $0.01 < P_{adj} < 0.05$ were regarded as suggestively significant.

Genotype-associated heritable rumen bacteria have varied propionate and valerate rumen concentrations

Genotype-associated heritable rumen bacteria can be a stable microbiota passed to the offspring



The mother-offspring comparison:

- Heritable rumen bacteria had higher compositional similarity than nonheritable bacteria between two generations
- Predicted heritable microbial functions had higher stability than those from non-heritable bacteria.
- A high stability exists in heritable rumen bacteria at both compositional and functional levels, which could be passed to the next generation in dairy cows.

Innovative breeding strategies

Microbiability trait: Phenotypic variance that is explained by the microbiota

Heritable and high feed efficiency/low CH₄ associated rumen microbes

Breeding potential

1

Nonheritable and high feed efficiency/low CH₄ associated rumen microbes

Feed management strategies

Future Directions for microbiome targeted breeding

- Find a way to measure the rumen microbiota as a quantifiable trait and to show causality with the phenotypes
- Validate over multiple generations to determine true heritability
- Determine the interaction between genetics and diet (and other environmental factors) on heritable vs non-heritable rumen/gut microbes
- Characterize the interactions with the host, and the underlying host mechanisms regulating the microbiome

Take home messages

More data and validation models are needed to determine causal effect of microbiome in cattle Research question driven data generation

Microbiome intervention can be an effective with novel technologies: endogenous microbiome and host genetics should be considered: 3R (right genetics for right microbiome intervention and right management)

Acknowledgements

- ➤ Funding agencies: NSERC, RDAR, Alberta Beef producers, Beef Cattle Research Council Cluster Funding, NSERC Alliance
- ➤ All collaborators and lab members

