

Animal and Food Genomics Group

Molecular phenotyping through metabolomic analyses in pig breeds

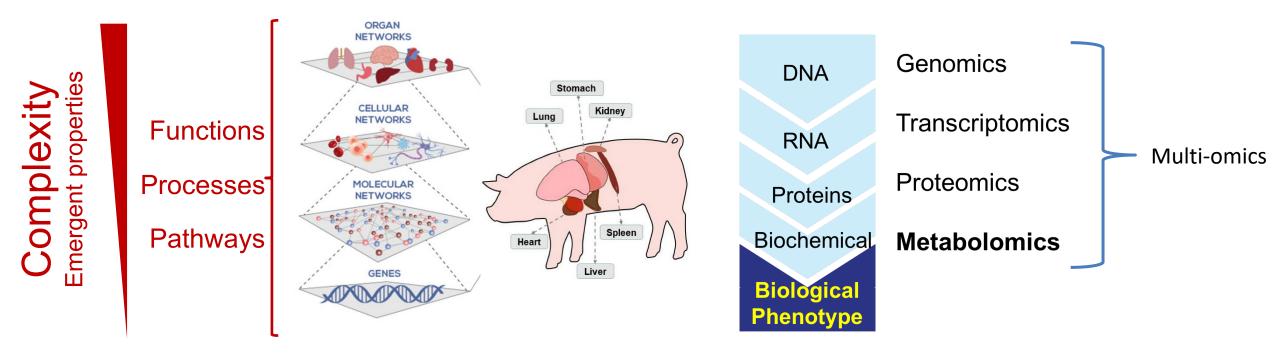
Matteo Bolner

Department of Agricultural and Food Sciences Division of Animal Sciences University of Bologna, Bologna Italy

matteo.bolner2@unibo.it

Biological complexity: an overview

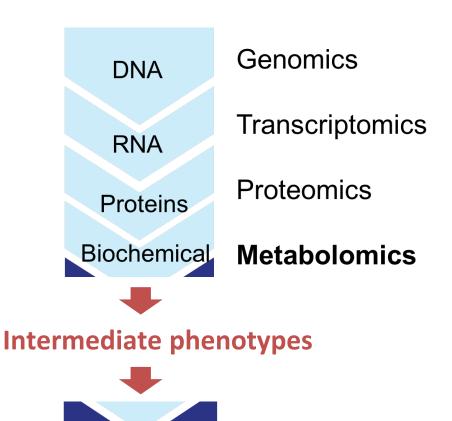
The different layers of organization establish complex links allowing properties to emerge.



Processes and pathways interact with each other, defining cell types, organs, and the organism as a whole.

Metabolomics as a molecular phenotyping approach

Metabolites are the end products of cellular processes.

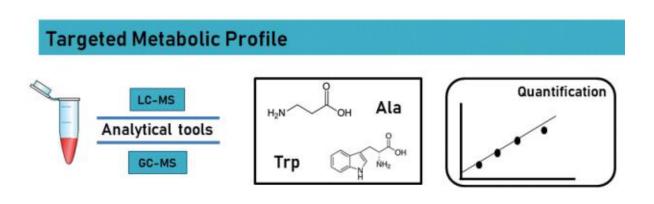


They can help define intermediate phenotypes, i.e. precursors to final phenotypes and complex traits

Metabolomics aims to characterize and quantify low molecular weight metabolites (<1.5 kDa) in a biological sample.

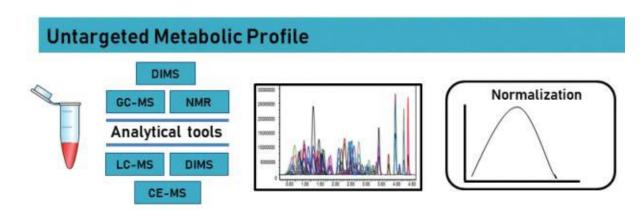
Metabolomics as a molecular phenotyping approach

Main approaches:



50 - 200 Metabolites

- Low detection limit
- Quantitative
- Limited targets
- Requires standards

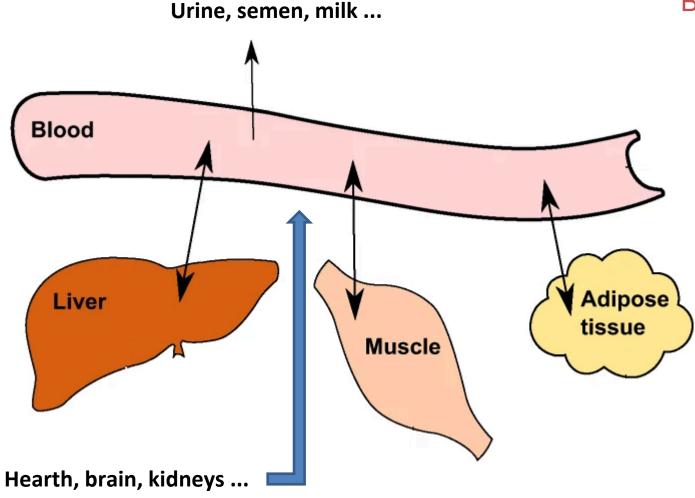


Source: De San-Martin et al. 2021 10.20945/2359-3997000000300

~1000 Metabolites

- Comprehensive
- High throughput
- Unexpected/novel metabolites
- Semi-quantitative
- Unknown compounds

Biological matrices for metabolomics



Blood is one of the most widely used matrices

- Each organ is fed and drained by blood
- Blood is sensitive to the effects of health or disease, genetic variation, environment, nutrition, or the impact of toxicants
 - It can be easily obtained.

Applications of metabolomic phenotyping: Pilot study on Italian heavy pigs

Animal

Volume 10, Issue 10, 2016, Pages 1741-1748

Targeted metabolomics Biocrates AbsoluteIDQ p180 Kit

Metabolomics evidences plasma and serum biomarkers differentiating two heavy pig breeds

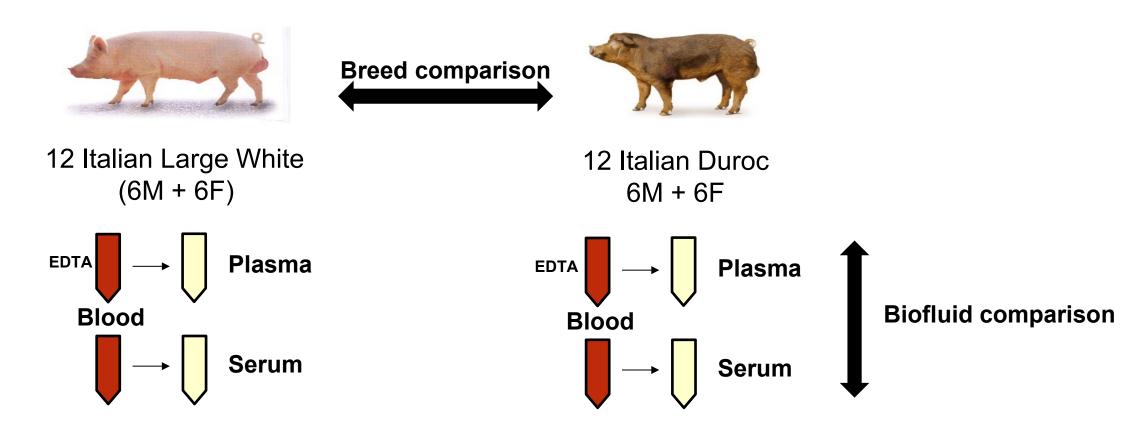
• Biofluid: Plasma and serum

Analysis : Targeted

Comparison: Between breeds (ILW vs IDU)

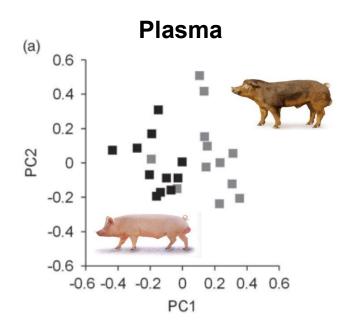
Metabolite classes	No.	Biological relevance (selected)						
Acylcarnitines	40	Energy metabolism fatty acid transport						
Amino acids	21	Amino acid metabolism, neurotransmitter metabolism						
Biogenic amines	19	Neurological disorders DNA stability, oxidative stress						
Hexoses	1	Carbohydrate metabolism						
Glycerophospholipids	90							
- lysoPhosphatidylcholine acyl – lysoPC a Cx:x	14	Degradation of phospholipids fatty acid profile						
- Phosphatidylcholine diacyl – PC aa Cx:x	38	Dyslipidemia,						
- Phosphatidylcholine acyl- alkyl – PC ae Cx:x	38	Membrane composition and damage						
Sphingolipids	15	Signalling cascades membrane damage						

Applications of metabolomic phenotyping: Pilot study on Italian heavy pigs



Applications of metabolomic phenotyping: Pilot study on Italian heavy pigs

Sparse Partial Least Square Discriminant Analysis (sPLS-DA)



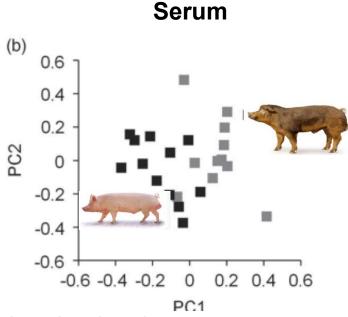


 Table 2
 Metabolites selected by sPLS-DA that were stable and significant in plasma and serum (P < 0.20)

7 metabolites discriminate between breeds

			ID			ILW				Stability ²		Significance ³			
Biofluid	Metabolic class	Metabolite ¹	Mean _R	SD_R	Mean _r	SD _r	Mean _R	SD_R	Mean _r	SD _r	t	P _{st}	t	P _{si}	Direction ⁴
Plasma	Sphingomyelins	SM (OH) C14:1	1.69	0.18	0.14	0.18	1.40	0.50	-0.14	0.15	24	0.037	0.9066	0.000	ID
	Biogenic Amines	Ac.Orn	6.93	3.62	-3.42	3.84	14.11	3.07	3.42	3.01	24	0.064	-1.0855	0.001	ILW
	_	Kynurenine	0.48	0.25	-0.18	0.27	1.01	0.27	0.18	0.21	24	0.066	0.1169	0.177	ILW
Serum	Sphingomyelins	SM (OH) C14:1	1.74	0.21	0.15	0.20	1.37	0.18	-0.15	0.21	24	0.029	0.2798	0.008	ID
		SM (OH) C16:1	2.43	0.39	0.22	0.34	1.83	0.29	-0.22	0.34	22	0.084	0.2957	0.012	ID
		SM C16:0	74.36	7.12	4.77	6.42	61.78	5.13	-4.77	6.41	24	0.021	0.3759	0.002	ID
	Biogenic Amines	Ac.Orn	6.24	3.48	-3.15	3.77	12.98	2.36	3.15	2.38	24	0.052	– 1.1162	0.001	ILW

Scaling up

Scaling up the analysis using untargeted metabolomics on around

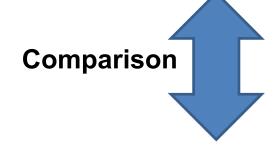
1000 samples

243 Castrated males

Italian Large White

727 samples

484 Entire gilts (females)



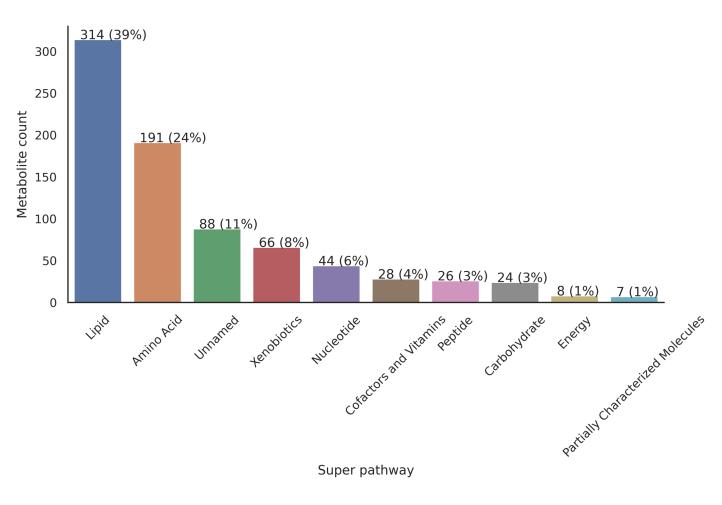
78 Castrated males

Italian Duroc

• **271** samples

193 Entire gilts (females)

Approach: Untargeted metabolomics



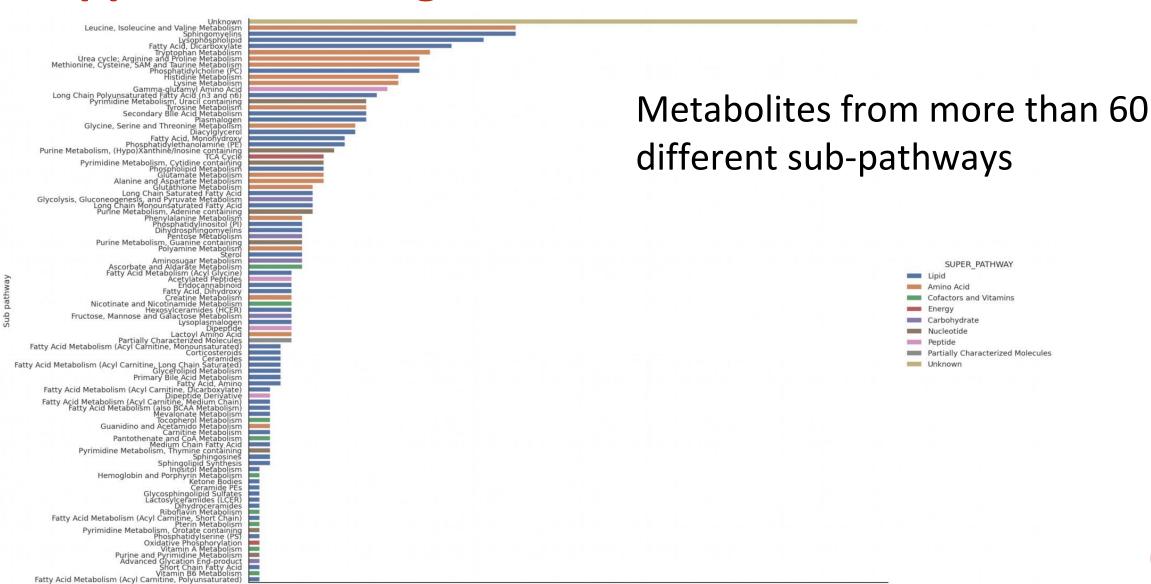
Biofluid: Plasma

796 metabolites measured:

- 642 Endogenous
- 88 Unnamed
- 66 Xenobiotic

Approach: Untargeted metabolomics

10



Metabolite count

Quality control

- Internal QC practices implemented by the data providers:
 - QC-normalization
 - Anchor sample merging
- Additional QCs (within breed):
 - Identified and removed outlier metabolite values (> 5 times outside the interquartile range)
 - Removed metabolites with > 25% of missing values or outliers
 - Excluded Xenobiotic metabolites from the analysis
- 580 metabolites passed all QCs and were used in the analysis

Missing data imputation

Missing metabolite values imputed with MICE (Missing data Imputation with Chained Equations)

- Imputation algorithm: Predictive Mean Matching (PMM)
- Predictors: Top 10 correlated metabolites (Endogenous only)
- 5 MICE runs generating 5 datasets each => to account for the random component

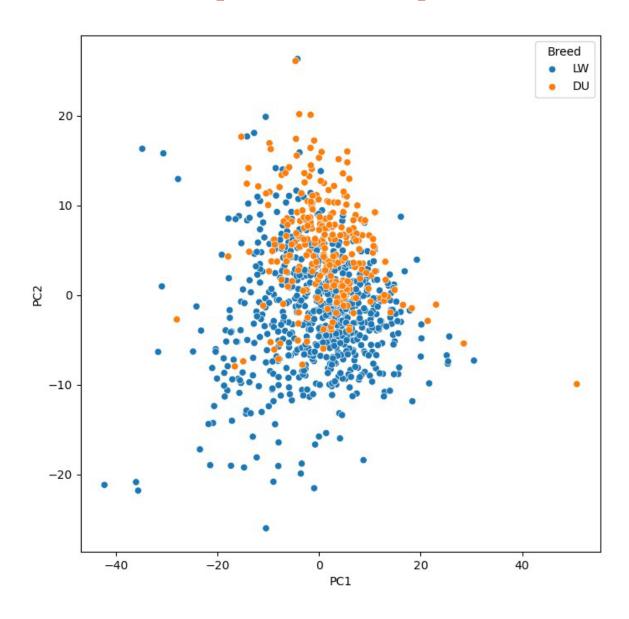
Total of **25 imputed datasets**

Removal of confounding effects

Confounding effects removed with a linear model:

- Slaughter date
- Weight of the animal
- Sex

Principal component analysis



PCA on all 580 metabolite residuals analyzed after missing data imputation

PC2 shows the most difference between the two breeds

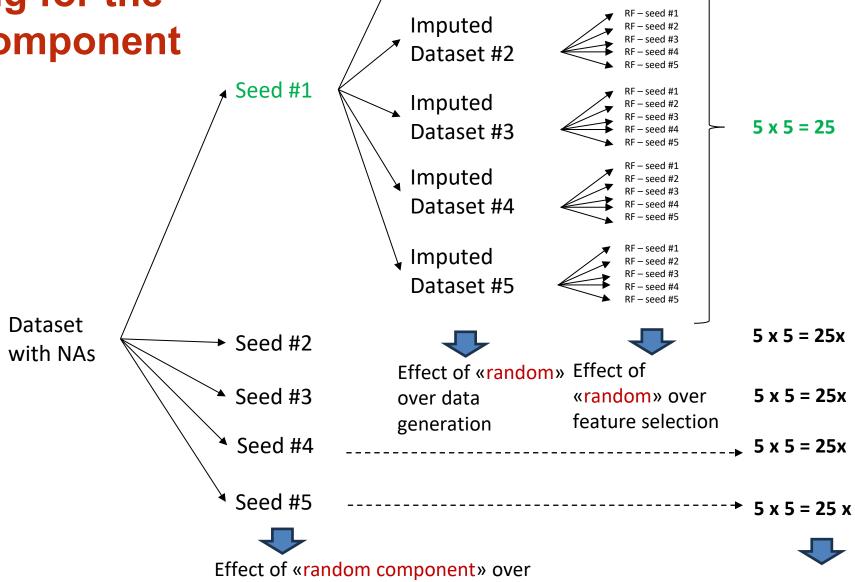
Detection of differentially abundant metabolites

Two methods applied in this study:

Sparse Partial Least Squares Discriminant Analysis
 (sPLS-DA): multivariate method best suited for analysing
 multicollinear data with a high number of features

 Boruta: All-relevant feature selection method based on Random Forest classification (machine learning)

Feature selection: Accounting for the random component

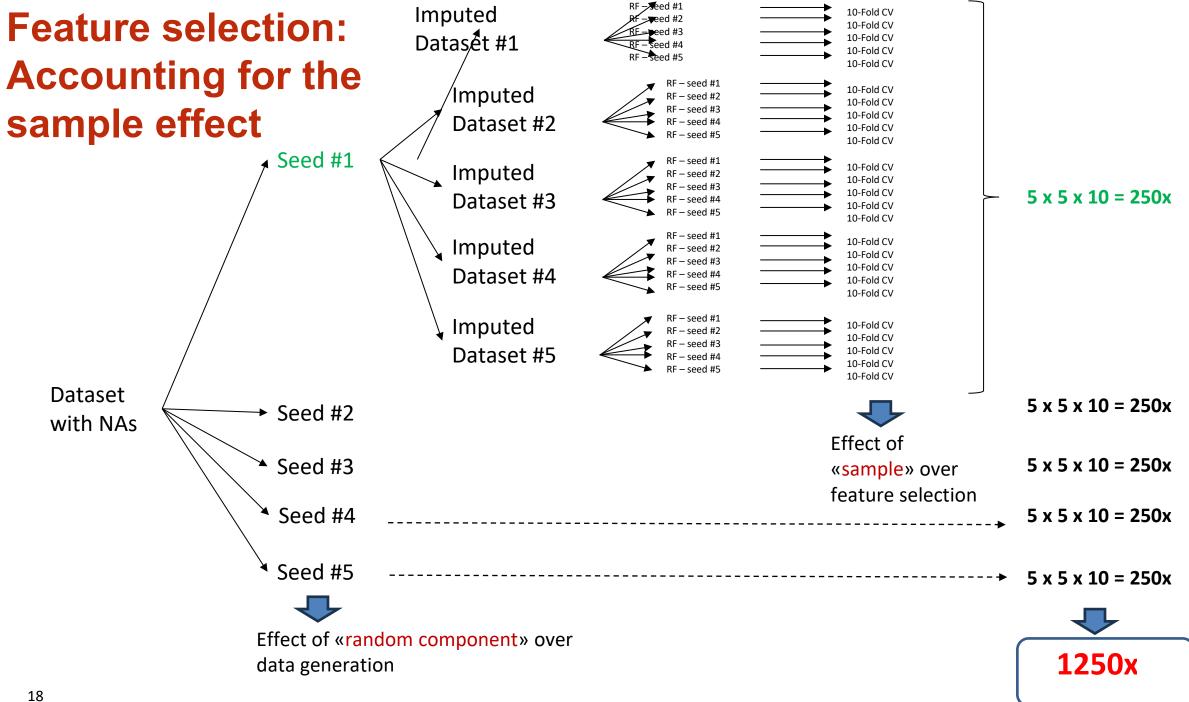


data generation

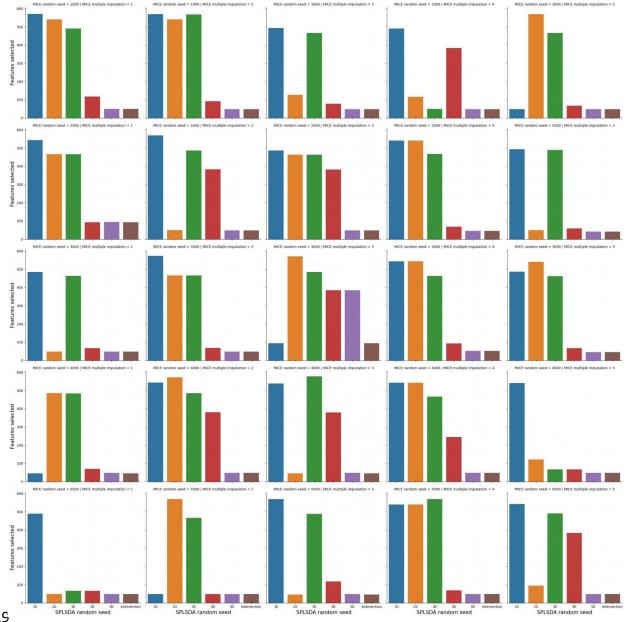
Imputed

Dataset #1

125 x



Feature selection results - sPLS-DA

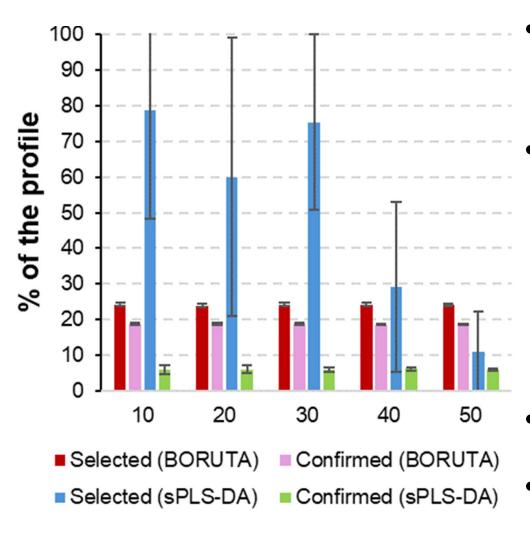


- Each bar represents a feature selection iteration
- sPLS-DA is unstable across runs => random component
- 31 metabolites are selected in all iterations and CVs

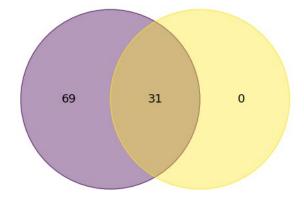
Feature selection results - Boruta

- Boruta is mostly stable
- 100 metabolites are selected in all iterations and CVs

Comparison between Boruta and sPLS-DA results

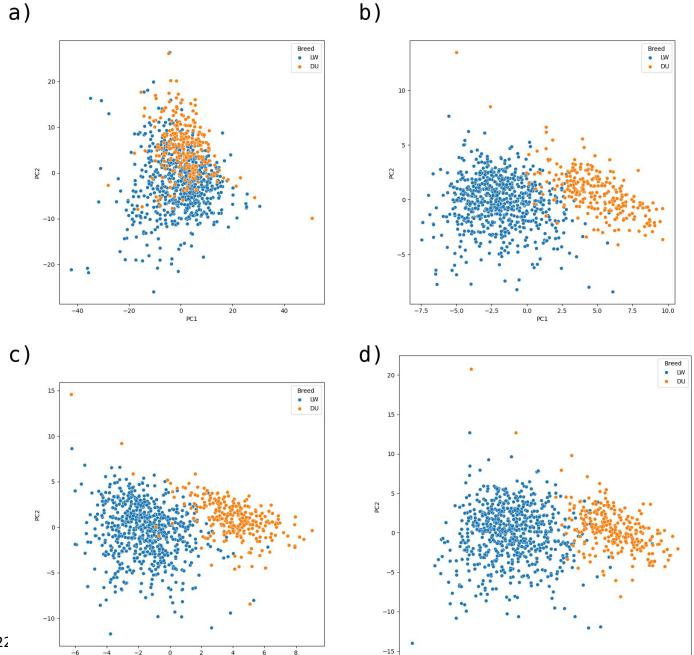


- All 31 metabolites selected by sPLS-DA are also selected by Boruta
 - 69 metabolites are selected only by Boruta



- Total of 100 metabolites selected
- All 7 metabolites from the pilot study were selected again

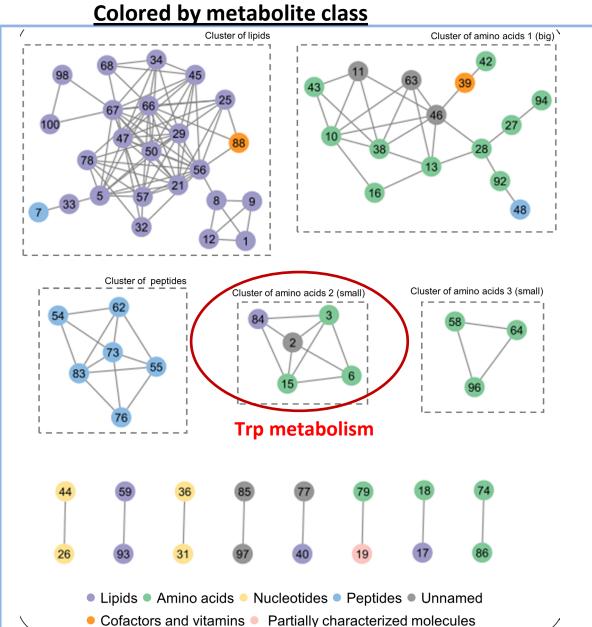
Principal Component Analysis on selected features



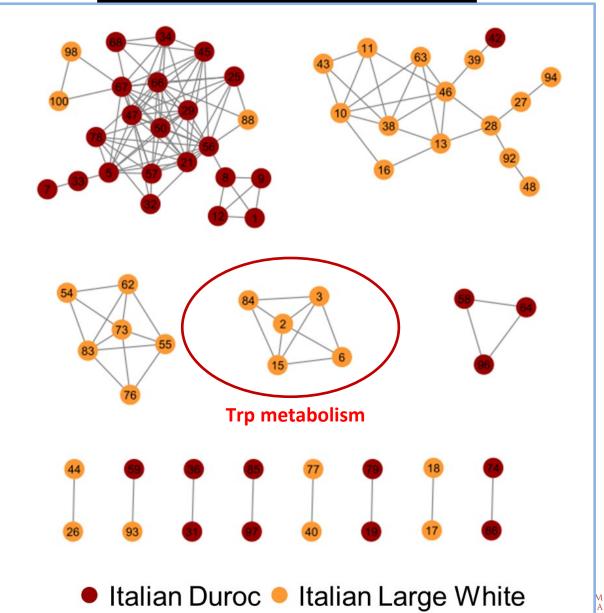
- a) All 580 metabolites
- b) 31 metabolites selected by both methods
- c) 69 metabolites selected by Boruta only
- d) All 100 metabolites selected by Boruta

The selected metabolites show a clear distinction between the two breeds

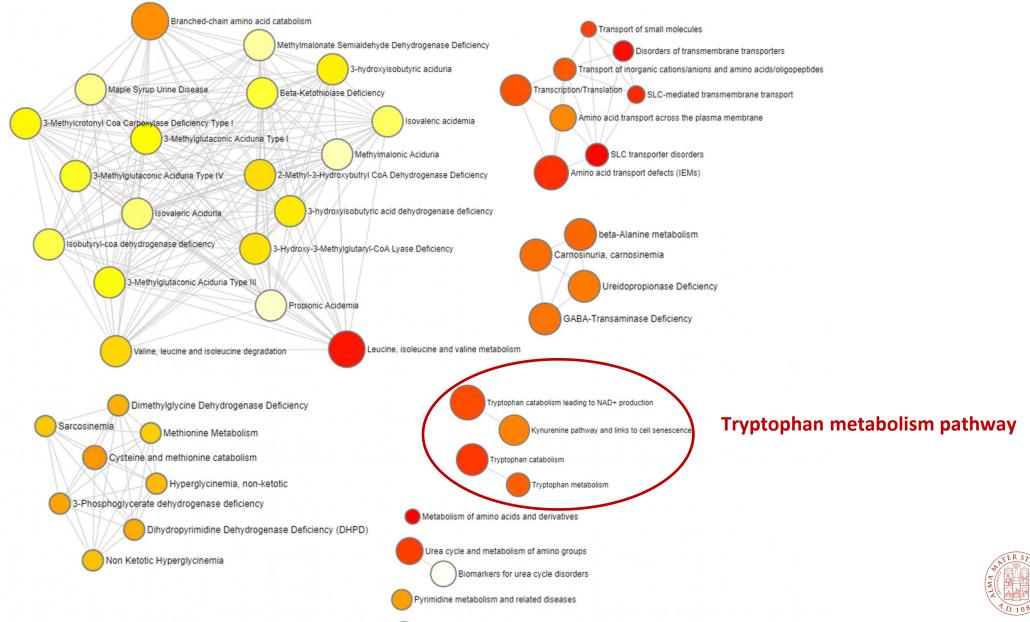
Network analysis of selected metabolites



Colored by higher abundance in breed



Pathway analysis of selected metabolites



Histidine catabolism

Conclusions

- We identified several metabolites that could be used as biomarkers to study the biological basis of complex traits in pigs
- We observed intrinsic differences between breeds at the metabolomic level ->
 due to the genetic background
- Five metabolites from the tryptophan metabolism pathway discriminate between breeds
- Further investigation on the genetic background determining these differences is warranted
- Metabolomics offers a promising approach for molecular phenotyping

Animal and Food Genomics Group

Luca Fontanesi Full Professor

Samuele Bovo
Junior Assistant Professor
Bioinformatics – data analysis

Francesca Bertolini Associate Professor

Anisa Ribani
Junior Assistant Professor *Molecular genetics*

Valeria Taurisano
Post-doc *Molecular genetics*

Stefania Dall'Olio
Associate Professor

Giuseppina Schiavo Junior Assistant Professor Bioinformatics – data analysis

Matteo Bolner
PhD student
Data analysis

Paolo Zambonelli Associate Professor

Jacopo Vegni Post-Doc Data analysis

Acknowledgments

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission.

Neither the European Union nor the European Commission can be held responsible for them.

Thank you! Questions?

Animal and Food Genomics Group

Molecular phenotyping through metabolomic analyses in pig breeds

Matteo Bolner¹, Samuele Bovo¹, Giuseppina Schiavo¹, Giuliano Galimberti², Francesca Bertolini¹, Anisa Ribani¹, Maurizio Gallo³, Stefania Dall'Olio¹, and Luca Fontanesi¹

¹ Animal and Food Genomics Group, Division of Animal Sciences, Dept. of Agricultural and Food Sciences, University of Bologna, viale G. Fanin 46, 40127 Bologna, Italy

² Dept. of Statistical Sciences "Paolo Fortunati", University of Bologna, via delle Belle Arti 41, 40126 Bologna, Italy

³ Associazione Nazionale Allevatori Suini, via Nizza 53, 00198 Roma, Italy matteo.bolner2@unibo.it