

Comparison of different residual carbon dioxide formulations as a means to select feed efficient dairy cows

Arash Chegini, Enyew Negussie, Ali R. Bayat, Tomasz Stefanski, Martin H. Lidauer

Natural Resources Institute Finland
Tietotie 4, 31600 Jokioinen

- Feed costs is the main cost of production.
- Higher feed efficiency (FE) ----> profit and environment.
- Feed intake is expensive to record.
- Possibility to record gaseous traits.

- Higher heat production than expected = lower FE = higher CO₂
 (Huhtanen et al., 2021)
- A similar criterion like RFI using CO₂ could be developed.

$$RCO_2$$
 = actual CO_2 – expected CO_2

- The common method of calculating residual metrics is regression.
- Implausiblible partial regression coefficients.
- An alternative is energy requirement coeff. from nutrition studies.

Objectives

- To develop different RCO₂ and RFI formulations.
- To estimate the correlations between RCO₂ and RFI with efficiency traits.
- To compare two divergent groups of animals for residual formulations in terms of feed efficiency.

Data

- No. of animals = 83 primiparous RDC kept in freestall
- CO₂ measurements made from Oct. 2021- May 2023
- Two GreenFeed units
- Total number of Obs.: 51977 (3.41 rec/anim/d)
- CO₂ edition criterion: μ ± 2.5 SD

Summary statistics

Trait	Unit	n	Mean	SD
Carbon dioxide production	g/d	13136	12240.5	1466.63
Dry matter intake	kg/d	16060	19.7	2.52
Energy-corrected milk	kg/d	16517	30.7	4.31
Metabolic body weight	kg ^{0.75}	16517	120.4	9.33
Body weight loss	kg/d	16517	0.11	0.325
Body weight gain	kg/d	16517	0.27	0.254

Calculation of phenotypes and analysis

Scenario 1: Multiple linear regression

$$RFI_{MLR} / RCO_{2MLR} = DMI - [\hat{\mu} + \hat{\gamma}_1 \times ECM_i + \hat{\gamma}_2 \times MBW_i - \hat{\gamma}_3 \times BWL_i + \hat{\gamma}_4 \times BWG_i]$$

$$RCO_{2MLR} = CO_2 - [2825.0 + 106.1 \times ECM + 47.6 \times MBW - 970.6 \times BWL + 1769.1 \times BWG]$$

Expected CO_2

Calculation of phenotypes and analysis

Scenario 2: Finnish energy requirement tables (Luke, 2022)

$$RFI_{FIN} = DMI - [0.477 \times ECM + 0.0477 \times MBW - 2.588 \times BWL + 3.142 \times BWG]$$

5.15, **0.515**, **-28** and **34** were divided by the energy density of the diet.

$$RCO_{2FIN} = CO_2 - [295.4 \times ECM + 29.5 \times MBW - 452.9 \times BWL + 882.4 \times BWG]$$

$$\emptyset = \gamma \cdot (1 - k_l) \cdot \tau$$
 e.g., 295.4 = 5.15 × (1 – **0.61**) × 147.06 gr CO₂/MJ heat production

(Huhtanen et al., 2021)

Conversion efficiency of ME to NEL in Finnish requirement tables

Calculation of phenotypes and analysis

Scenario 3: Nutrient requirement of dairy cattle (NRC, 2021)

$$RFI_{NRC} = DMI - [0.440 \times ECM + 0.0586 \times MBW - 3.292 \times BWL + 3.292 \times BWG]$$

4.765, **0.634**, **-35.62** and **35.62** were divided by the energy density of the diet.

$$RCO_{2NRC} = CO_2 - [238.3 \times ECM + 31.7 \times MBW - 426.4 \times BWL + 1361.9 \times BWG]$$

$$\underline{\emptyset} = \gamma \cdot (1 - k_{\underline{l}}) \cdot \tau$$
 e.g., 238.3 = 4.765 × (1 – **0.66**) × 147.06 gr CO₂/MJ heat production

Conversion eff. of ME to NEL in NRC 2021

Efficiency traits

Energy conversion efficiency (**ECE**) = ECM / MEI Carbon dioxide intensity (**CO**₂I) = CO₂ / ECM Methane intensity (**CH**₄I) = CH₄ / ECM

Trait	Unit	n	Mean	SD
ECE	kg/MJ ME	16060	0.145	0.023
CO ₂ I	g/kg	13136	405.5	77.18
CH ₄ I	g/kg	13136	14.3	3.11

The best half (low) and worst half (high) of the animals in terms of RFI and RCO₂ were compared (only animals with data in \geq 100 DIM).

Correlations between DMI, energy sinks, efficiency measures

Trait	DMI	ECM	MBW	BWL	BWG	ECE	CO ₂ I	CH ₄ I
CO ₂	0.58	0.17	0.43	-0.25	0.40	-0.31	0.50	0.55
DMI		0.36	0.31	-0.32	0.25	-0.47	-0.06	0.13
ECM			-0.02 ^b	0.27	-0.33	0.63	-0.72	-0.59
MBW				0.00 ^{ns}	0.37	-0.21	0.30	0.27
BWL					-0.38	0.55	-0.29	-0.32
BWG						-0.51	0.51	0.46
ECE							-0.71	-0.65
CO ₂ I								0.88

without superscript = p < 0.01; b = p < 0.05; ns = non-significant

Correlations with production & efficiency traits

Trait	RCO _{2MLR}	RCO _{2FIN}	RCO _{2NRC}	RFI _{MLR}	RFI _{FIN}	RFI _{NRC}
CO ₂	0.80	0.66	0.73	0.28	0.19	0.15
DMI	0.29	0.18	0.24	0.75	0.59	0.57
ECM	0.00 ^{ns}	-0.59	-0.47	0.00 ^{ns}	-0.32	-0.21
ECE	-0.23	-0.70	-0.64	-0.59	-0.76	-0.64
CO ₂ I	0.51	0.90	0.84	0.20	0.40	0.30
CH ₄ I	0.55	0.86	0.83	0.22	0.39	0.29

without superscript = p < 0.01; ns = non-significant

Comparison between low and high Residual formulations

	RCO _{2MLR}		RCO	2FIN	RCO _{2NRC}	
Trait	low	<mark>high</mark>	low	<mark>high</mark>	<mark>low</mark>	high
CO ₂	11732	12868	11841	12758	11702	12898
ECE	0.149	0.139	0.152	0.136	0.151	0.137
CO ₂ I	381	433	371	443	373	442
CH ₄ I	13.35	15.30	12.93	15.72	13.07	15.58

	RFI _{MLR}		RFI _{FIN}		RFI _{NRC}	
Trait	low	high	low	high	low	high
CO ₂	12038	12562	12042	12558	12187	12413
ECE	0.147	0.141	0.150	0.138	0.149	0.139
CO ₂ I	398	416	384	430	390	425
CH ₄ I	13.98	14.67	13.41	15.24	13.75	14.91

Main findings

- ➤ Selection based on RCO₂ formulations would improvement energy conversion efficiency.
- Residual formulations calculated using energy requirement tables are better able to distinguiush more efficient animals.
- ➤ RCO₂ has the potential to simultaneously improve feed efficiency and reduce emissions.

Thank You

Any Question?

