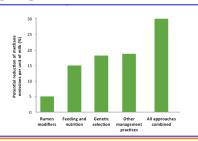
Diurnal variation and correlation between methane and new feed efficiency metric in Nordic Red dairy cows

E. Negussie*, A. Chegini, T. Stefanski, A. R. Bayat, and M.H. Lidauer

Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland


Background

- ✓ Environmental sustainability
 - ✓ Carbon neutrality commitments
 - > EU: 2050
 - Finland: 2035
- Reducing livestock systems emissions
 - ✓ has been one of the priorities in different countries

- Livestock systems emissions two main areas:
- ✓ Methane measurement

✓ Mitigation options

- Methane measurement
 - ✓ National inventory
 - Mitigation strategies
- Quantifying CH₄ on an individual animal basis is difficult & expensive
 - ✓ Different techniques over the last several years
 - ✓ This work still on-going

Finland

✓ Since 2012 invested in various techniques

- ✓ Currently we are working on greenfeed units
 - ✓ Accounting for all effects to ensure accurate measurement is still challenging

✓ Mitigation

- ✓ Depends on ability to accurately measure CH₄
 - Can be both direct or indirect
 - ✓ Indirect FE traits
- ✓ Long been working on FE traits
 - ✓ Lately developing new & cost-effective FE metric : RCO₂
 - ✓ Its association with MeP traits & its comparison with RFI not reported

Objectives

- To assess CH₄ diurnal variation and measurement duration on methane quantification
- Association between methane and a new feed efficiency trait

Data

1. Gaseous Traits: CH₄ & CO₂

- Two GreenFeed units (C-Lock, USA)
- 2021-23, 105 1st lactation Nordic Red cows
- > 71,000 CH₄ & CO₂ RPT daily records

➤ CH₄ traits

- Methane production (MeP, g/day)
- Methane intensity MeI, (gCH₄/kg milk)
- ➤ Methane yield (MeY, gCH₄/kg DMI)
- Residual Methane Production (RMP, g/d) $MeP = b_1DMI + b_2Milk + b_3mBW + \varepsilon$ $RPM = \hat{\epsilon}$
- \triangleright RCO₂: Chegini et al. (EAAP, 2024)

 $RCO2 = Actual_CO_2 - Predicted_CO_2$

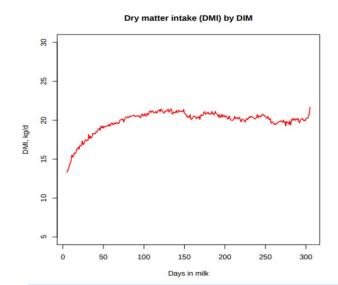
2. Feed intake & production traits

- Daily records from 870 1st lactation cows
- This data combined with CH₄ & CO₂ data
- > 19,000 combined daily average records
 - adjusted for Time, mDur
- > RFI

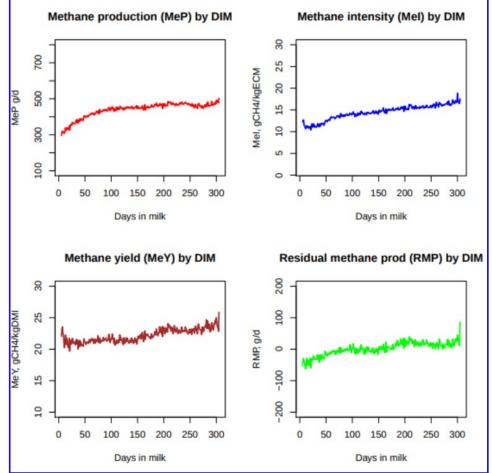
RFI = Actual DMI – Predicted DMI

Data analysis

- Univariate & bivariate repeatability animal models
- > Fixed
 - Fixed reg, TestYear*month
- > Random
 - rec date and animal effects
- Note: the no animals is not high
 - Difficult to disentangle PE & add genetic effects
 - Animal correlations and animals solutions calculated


Production Traits

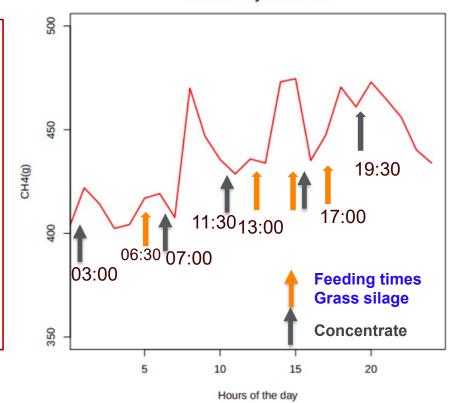
Traits	Mean	SD
ECM	30.9	4.3
mBW	119.2	9.5
DMI	19.9	2.7
RFI	0.0	1.9


CH₄ & RCO2 traits

Traits	Mean	SD
MeP	439.4	80.8
Mel	14.3	3.1
MeY	22.0	3.6
RMP	0.0	66.9
RCO ₂	0.5	1269.1

DMI & methane output traits by days in milk

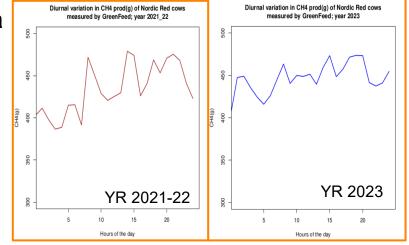
- CH4 traits follow the DMI intake trend
- The decrease in early lactation & a gentle increase in mid to late lactation as expected

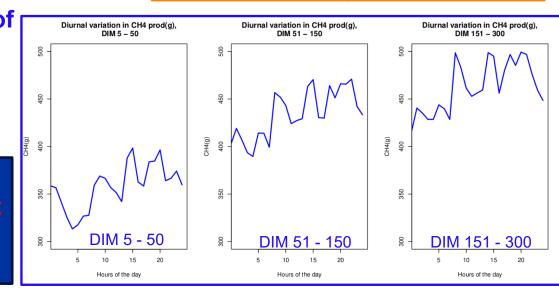


Diurnal variation in Methane production

CH4 measurement

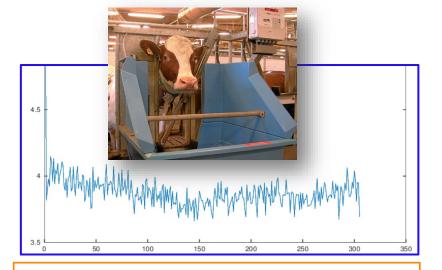
- Total measurement of true cows emission is difficult
 - Techniques are not available
- Most of the techniques are spot sampling techniques
 - CH₄ emissions change overtime (day, month, years)
 - Accounting for potential sources of variation essential


Diurnal variation in CH4 production(g) of Nordic Red cows measured by GreenFeed


By year of data collection

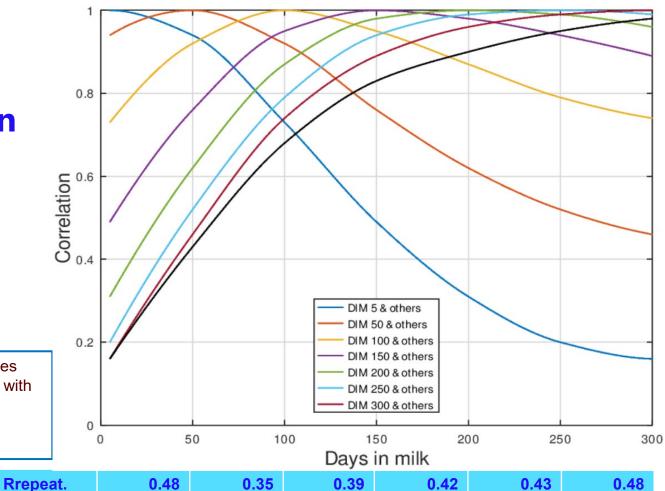
Diurnal variation

By stages of lactation


Fitting a general average curve or fixed effect of time to account for diurnal variation may not be optimal

Methane measurement duration

Duration classes	Mean CH4	SD
Short (1 - 2 min)	399.9	120.4
Medium (3 - 6 min)	434.5	108.1
Long (7 - 10 min)	443.1	104.9
Very long (>11 min)	518.7	107.3


 In using spot sampling techniques, accounting for duration of measurement is important

- **✓** Ranking
- ✓ Two animal model runs
 - 1) Adjusted for measurement **Duration**
 - 2) Not adjusted
- ✓ When top 10 and 20 cows ranked for lower CH4
 - ✓ Rank shifts were observed

Correlations within MeP at different days in milk

Correlations within MeP across days in milk

- -MeP varied with lactation stages-Mid lactation highly correlated with other days in milk
 - Important in designing recording strategies

Correlation of MeP with a new feed efficiency metric

Mitigation

- ✓ Indirect : selection for FE traits e.g., RFI vs RCO2 (Chegini et al. EAAP)
 - ✓ Its effect on MeP depends on magnitude of correlation with the traits
 - Combined daily average MeP, RFI, RCO2 data used
 - ➤ 19,000 obs from 105 1st lactation cows
 - Bivariate analyses : MeP & RFI and MeP & RCO2
 - The bivariate model:
 - Fixed reg, YRmon, as fixed & rec date, animal random

Animal correlations between MeP and two FE traits RFI and RCO2

Traits	MeP	RFI	
MeP			
RFI	0.53		
RCO ₂	0.71	0.54	

Ranking cows for RFI and RCO2: its correlated effect on MeP

Animal Groups	Rankig for RFI	Common cows with lower MeP
Cows	Top 20	11
	Top 30	18

Animal Groups	Rankig for RCO ₂	Common cows with lower MeP
Cows	Top 20	12
	Top 30	21

Conclusions

- When using spot sampling techniques for CH₄ measurement, accounting not only for diurnal variation but also for the duration of CH4 measurement is important for accurate estimation of CH4 emission.
- Higher correlation between MeP & RCO2 than between MeP & RFI. Indicates that better correlated response on MeP expected from RCO2 than from RFI.

Thank you!

