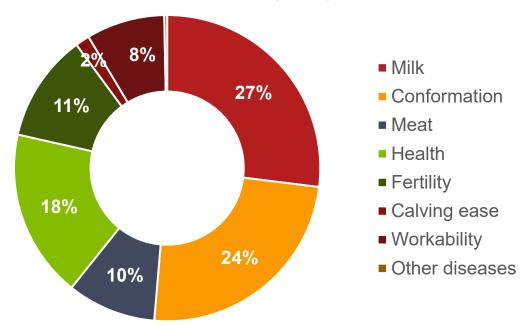
Genetic correlation between body weight and methane emission in Norwegian Red

Karoline A. Bakke^{2*} and B. Heringstad^{1,2}

¹Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway

²Geno Breeding and A.I organisation, Ås, Norway



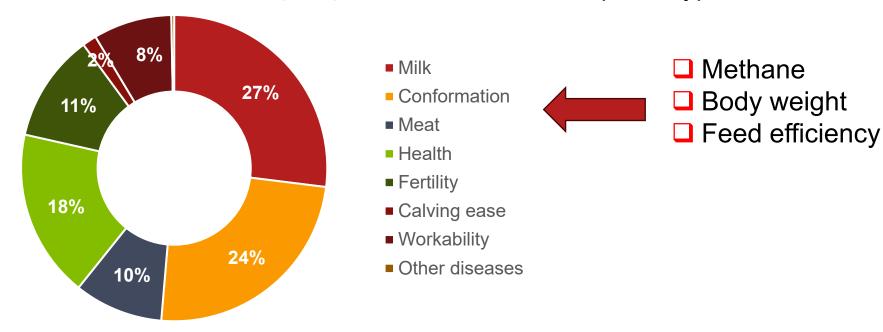
Background

Relative weight of Group of traits in the Total Merit Index (TMI)

Norwegian Red dairy cattle → a broad breeding goal

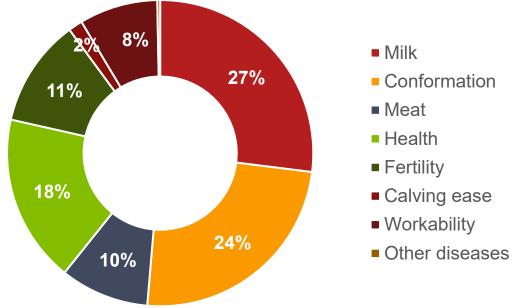
Potential to reduce enteric methane in Norwegian Red by breeding¹

Breeding → offers permanent/long term reductions


Correlation methane to other traits, in e.g. body weight, is important

Background

Relative weight of Group of traits in the Total Merit Index (TMI)


Ongoing project record and collect phenotypic data on:

Background

Relative weight of Group of traits in the Total Merit Index (TMI)

Ongoing project record and collect phenotypic data on:

Aims

- 1. Genetic analysis of *methane* + *body weight*
 - → Commercial dairy herds with AMS
 - → Measured by GreenFeed + permanent scales

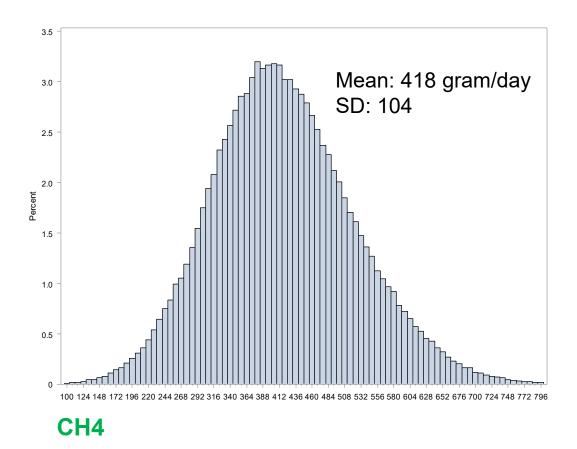
Aims

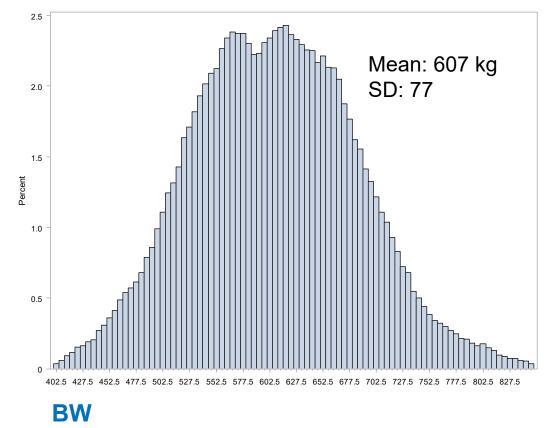
- 1. Genetic analysis of *methane* + *body weight*
- 2. Genetic correlation between *methane* + *body weight*

Aims

- 1. Genetic analysis of *methane* + *body weight*
- 2. Genetic correlation between *methane* + *body weight*
- Index correlations with estimated breeding values
 (EBV) for other traits

Data


- Methane (CH4) in 25 herds
- Body weight (BW) in 9 herds
- Daily records on 1 960 cows
- Data from 2019 to 2024
- o CH4 220 932 obs.
- o BW 260 132 obs.



Phenotypic distributions

Models

Linear animal repeatability model (bivariate)

Traits (Y)

CH4: avg daily methane (gram)

BW: avg daily body weight (kg)

Models

Linear animal repeatability model (bivariate)

Herd

Week: lactation stage as weeks in milk

Pa_CaAge: calving age for first parity, or parity (>1)

FIXED EFFECTS

Traits (Y)

CH4: avg daily methane (gram)

BW: avg daily body weight (kg)

Models

Linear animal repeatability model (bivariate)

htd: testday within herd

a: animal genetic

pe: permanent environment animal

e: residual

RANDOM EFFECTS

Traits (Y)

CH4: avg daily methane (gram)

BW: avg daily body weight (kg)

Results

Heritability and genetic correlation

BW: avg daily body weight (kg)

CH4: avg daily methane (gram)

Heritabilities (h²) and genetic correlation

Trait	BW	CH4
BW	0.58 (0.05)	
CH4	0.50 (0.09)	0.39 (0.04)

$$h^2$$
 calculated as: $(\sigma_a^2 / (\sigma_a^2 + \sigma_{htd}^2 + \sigma_{pe}^2 + \sigma_e^2))$

Associations to other traits

Index correlations between EBV for BW and CH4 to sub-index for other traits

Sub-index	BW	CH4
Milk	0	0.09
Fertility	-0.19	-0.22
Udder conformation	0	0
Udder health	-0.13	-0.14
Other diseases	0.14	0.12
Claw health	-0.15	-0.11
Carcass	0.14	0.07

Associations to Total Merit Index (TMI)

Index correlations between EBV for BW and CH4 with TMI (se)

	BW	CH4
ТМІ	-0.13	-0.075
	(<.001)	(.001)

Conclusion

- BW of Norwegian Red cows heritable (0.58)
- Strong genetic correlation to CH4 (0.50)
- Heavier cows, more CH4
- Fertility + health index with CH4 & BW
- Low negative association to TMI

Breeding for better Inc.

