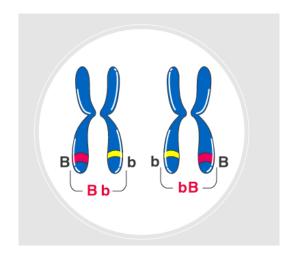


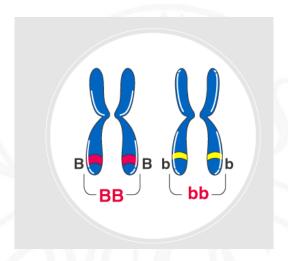
Cosmopolitan and local Italian beef cattle breeds uncover common patterns of heterozygosity related to fitness traits

Maria Chiara Fabbri 1*, Francesco Tiezzi 1, Alessandro Crovetti 1, Christian Maltecca 1, 2, Riccardo Bozzi 1

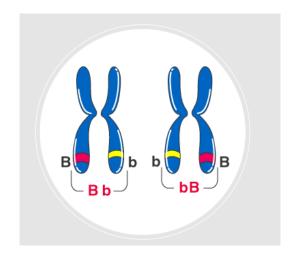

¹ Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali,

Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144 Florence, Italy;

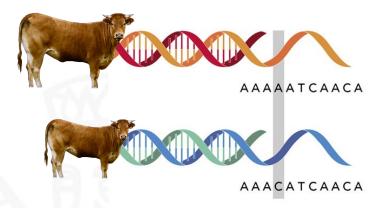
² Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607, USA;



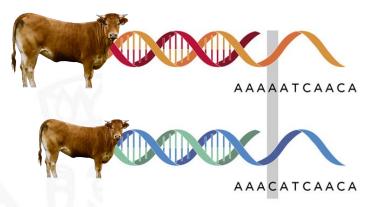
Heterozygosity is the possession of two different allelic forms



Homozygosity is the state of possessing two **identical allelic forms**



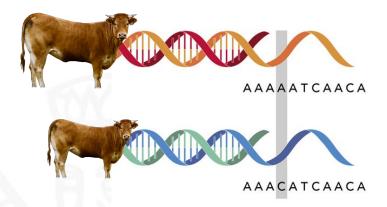
Heterozygosity is the possession of two different allelic forms


> Heterozygous-Rich Regions (HRRs) = regions of consecutive heterozygous sites

The analysis of HRR aims to identify genomic regions with high genetic variability, to provide information about the populations' genetic diversity and evolutionary history⁵, as well as to identify specific segments in the genome where increased genetic diversity could be beneficial^{6,7}"

Chessari, G., Criscione, A., Marletta, D. et al. Characterization of heterozygosity-rich regions in Italian and worldwide goat breeds. Sci Rep 14, 3 (2024).

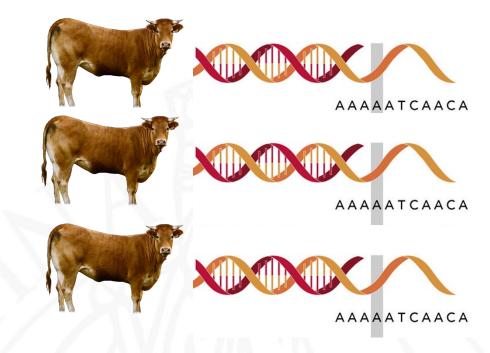
https://doi.org/10.1038/s41598-023-49125-x


➤ Heterozygous-Rich Regions (HRRs) = regions of consecutive heterozygous sites

➤ "The analysis of HRR aims to identify genomic regions with high genetic variability, to provide information about the populations' genetic diversity and evolutionary history⁵, as well as to identify specific segments in the genome where increased genetic diversity could be beneficial^{6,7}"

Chessari, G., Criscione, A., Marletta, D. et al. Characterization of heterozygosity-rich regions in Italian and worldwide goat breeds. Sci Rep 14, 3 (2024).

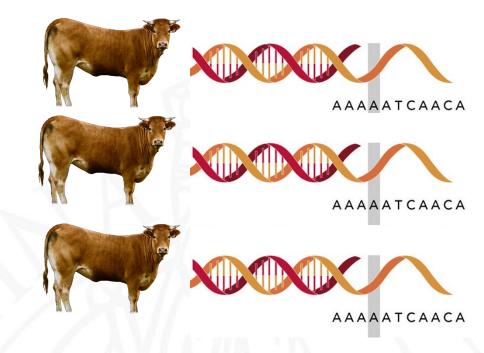
https://doi.org/10.1038/s41598-023-49125-x



Evidence suggests that increased heterozygosity occurs in regions under **balancing selection** or with a high recombination rate, as low linkage disequilibrium leads to high region diversity.

The increase in inbreeding is:

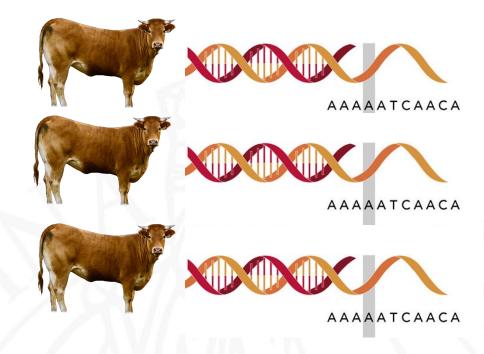
Unwanted



The increase in inbreeding is:

Unwanted

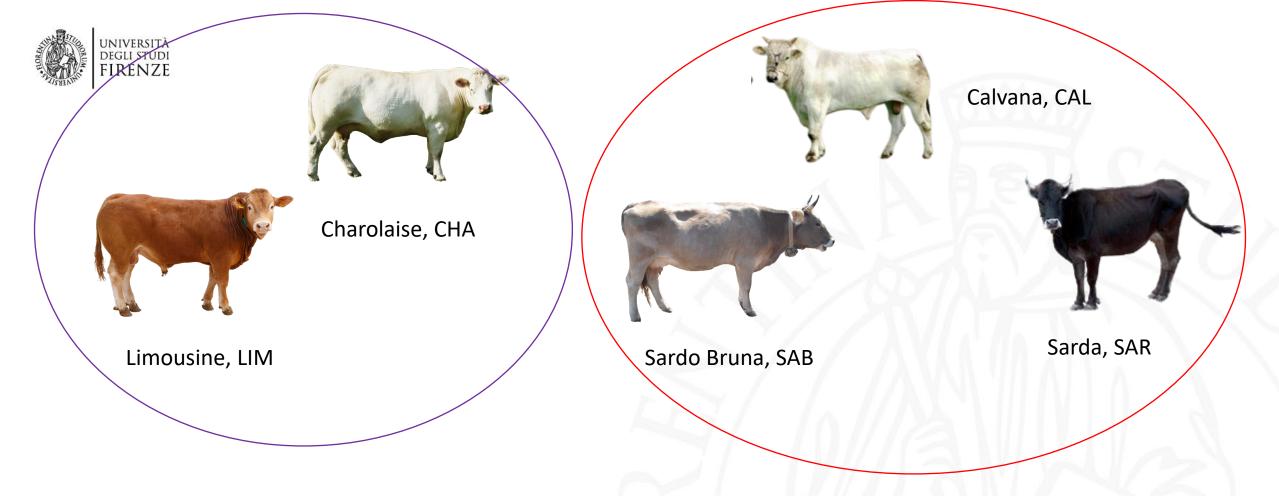
Wanted



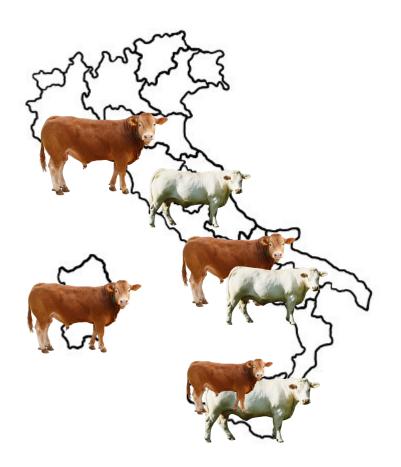
The increase in inbreeding is:

Unwanted

Wanted

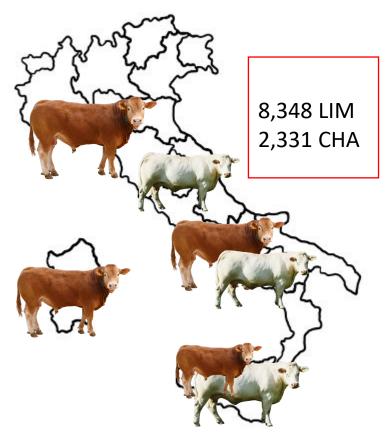


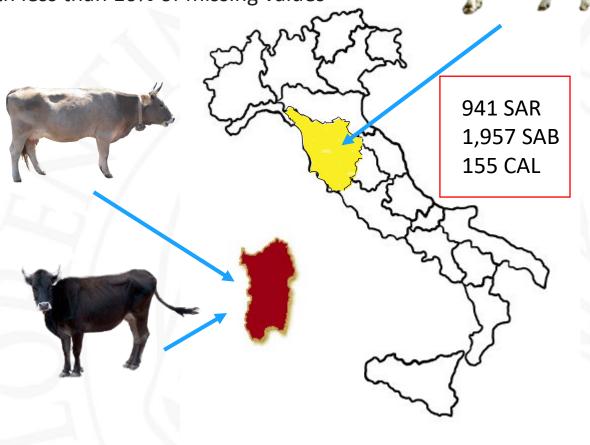
Consequently, fundamental to investigate regions which should be maintained heterozygous.


AIM:

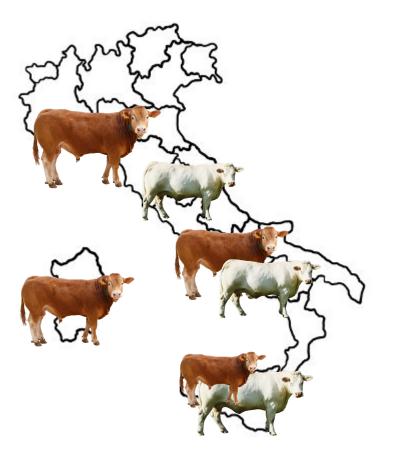
To identify and to compare patterns of heterozygosity in five Italian beef breeds, with the purpose to elicit particular selection patterns present in the local breeds that might differentiate them from the cosmopolitan ones.

The breeds' population size is high but different selective history.




• 13,732 DNA samples

GeneSeek GGP-LDv4 33 k


Material & Methods

• SNPs located on the 29 autosomes (n = 28,289), individuals and SNPs with less than 10% of missing values

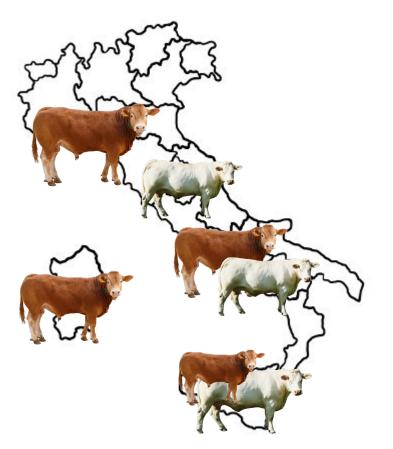
1 – Genetic distances among breedsMultidimensional Scaling andADMIXTURE Analyses

2 – Investigation of Heterozygous Rich Regions through *detectRuns* R package

• N. Minimum SNPs: 15

• Length: 10 kbp

Missing genotypes: 1


Opposite genotypes: 2

 Significant HRR: represented in more than 25% of all individuals for each breed.

3 - Gene Enrichment Analysis

1 – Genetic distances among breedsMultidimensional Scaling andADMIXTURE Analyses

2 – Investigation of Heterozygous Rich Regions through *detectRuns* R package

• N. Minimum SNPs: 15

• Length: 10 kbp

Missing genotype: 1

• Opposite genotypes: 2

 Significant HRR: represented in more than 25% of all individuals for each breed.

3 - Gene Enrichment Analysis

1 – Genetic distances among breedsMultidimensional Scaling andADMIXTURE Analyses

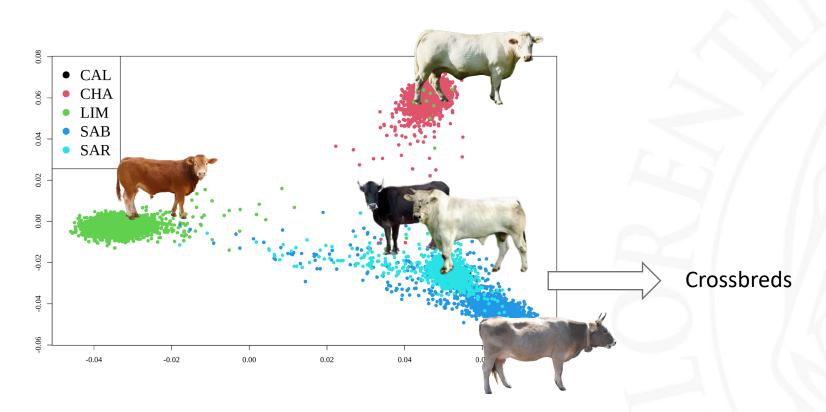
2 – Investigation of Heterozygous Rich Regions through *detectRuns* R package

• N. Minimum SNPs: 15

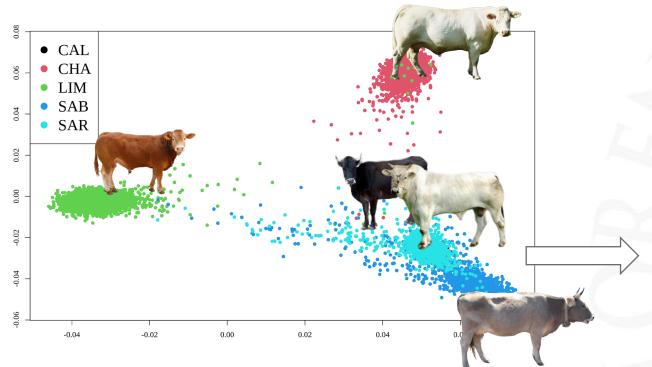
• Length: 10 kbp

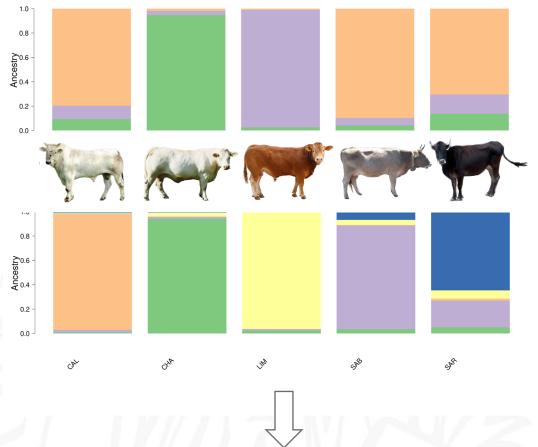
Missing genotype: 1

• Opposite genotypes: 2

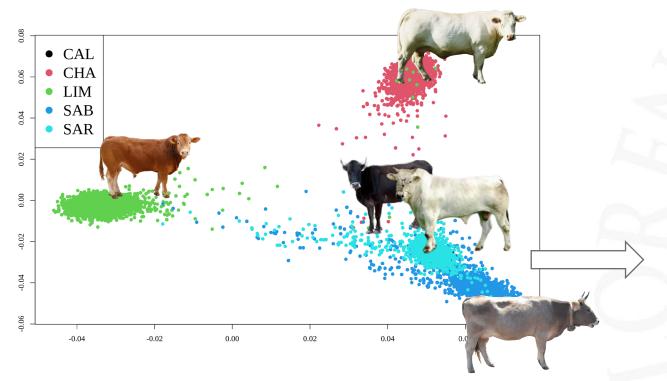

 Significant HRR: represented in more than 25% of all individuals for each breed.

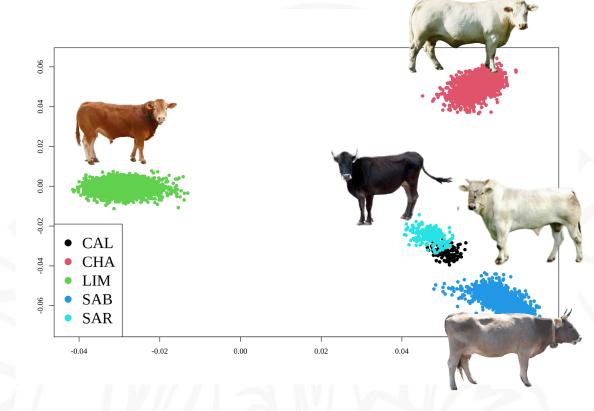
3 - Gene Enrichment Analysis




Genetic Distances among the five Italian beef breeds 27,089 SNPs and 12,801 cattle

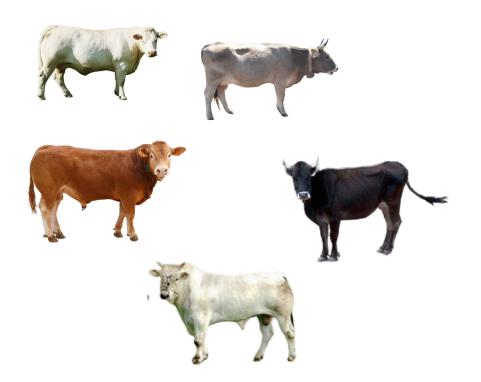
Genetic Distances among the five Italian beef breeds 27,089 SNPs and 12,801 cattle





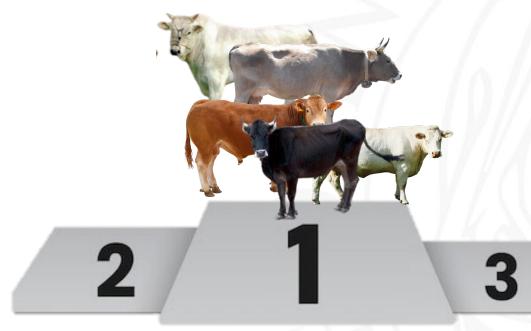
Only animals with **Q >= 80%** have been retained for HRR analysis

Genetic Distances among the five Italian beef breeds 27,089 SNPs and 11,374 cattle

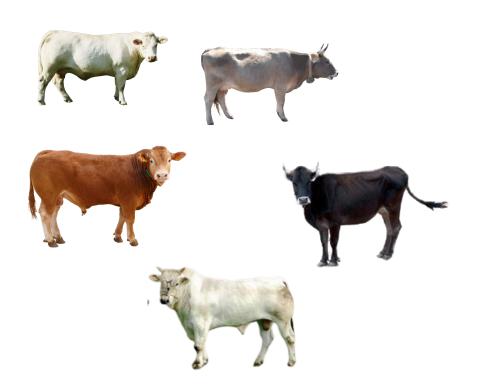


~ 1,400 potential crossbreds/classification errors removed

Heterozygous Rich Regions

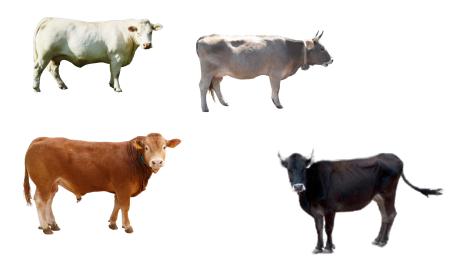


Breed	N.HRR	N.samples	Average per id
CAL	1233	148	8.3
CHA	18895	1989	9.5
LIM	78523	7733	10.1
SAB	14347	1482	9.7
SAR	1811	215	8.5


Heterozygous Rich Regions

Breed	N.HRR	N.samples	Average per id
CAL	1233	148	8.3
СНА	18895	1989	9.5
LIM	78523	7733	10.1
SAB	14347	1482	9.7
SAR	1811	215	8.5

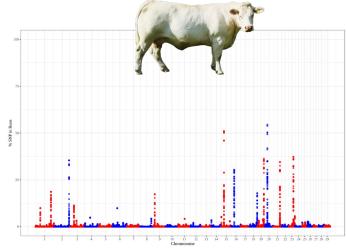
Heterozygous Rich Regions

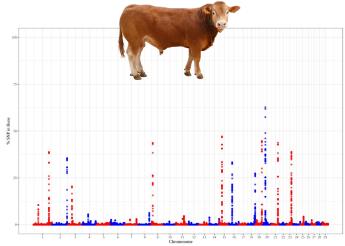


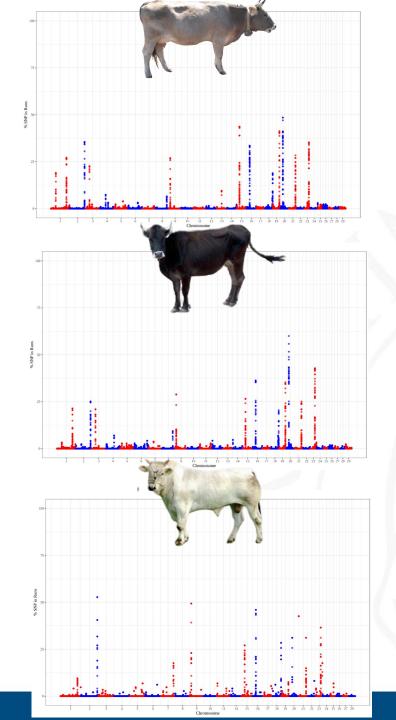
HRRs classes of length

Mbp	CAL	СНА	LIM	SAB	SAR
0 – 0.05	64.1 %	69.8 %	72.5 %	71.7 %	71.5 %
0.05 – 1	9.6 %	11.4 %	11.4 %	12 %	10.2 %
1-2	23.3 %	17.2 %	14.6 %	14.4 %	17 %
2 - 4	3 %	1.5 %	1.47 %	1.8 %	1.3 %

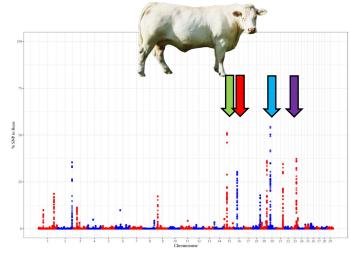
Heterozygous Rich Regions

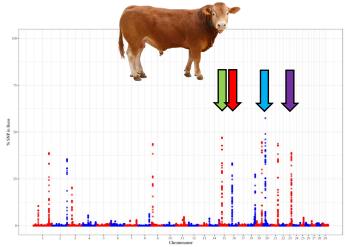


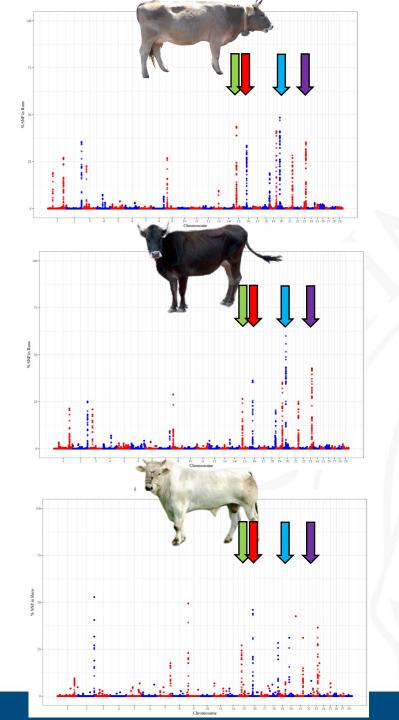



	CAL	СНА	LIM	SAB	SAR
0 – 0.05	64.1 %	69.8 %	72.5 %	71.7 %	71.5 %
0.05 – 1	9.6 %	11.4 %	11.4 %	12 %	10.2 %
1-2	23.3 %	17.2 %	14.6 %	14.4 %	17 %
2 - 4	3 %	1.5 %	1.47 %	1.8 %	1.3 %

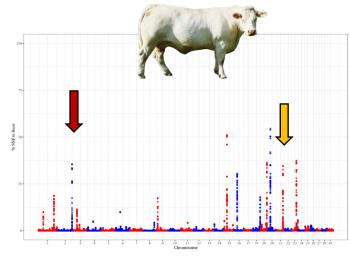
Heterozygous Rich Regions

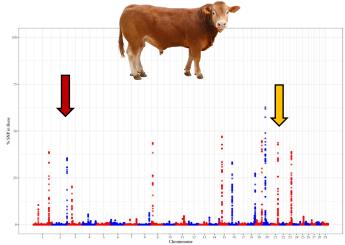


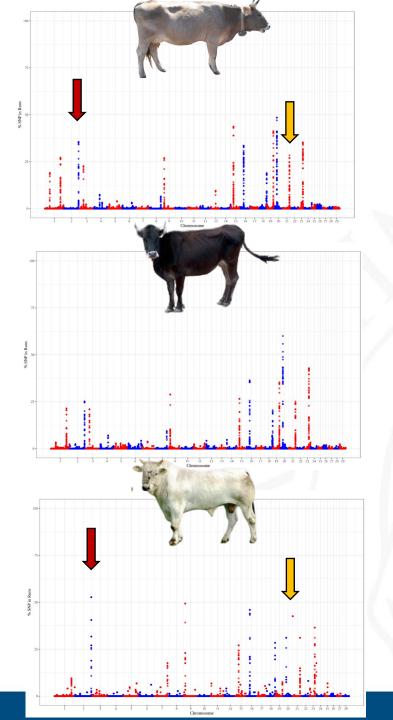



- 12-13 peaks were defined for each breed (except for CAL –lower).
- Peaks BTA15, BTA16, BTA20, and BTA23 were identified in all breeds.
- Peaks on BTA2 and BTA21 were identified on cosmopolitan, CAL and SAB breeds
- Peak on BTA 1 was identified only in LIM and SAB.

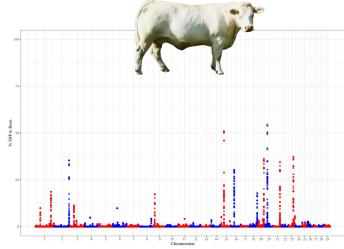
HRR

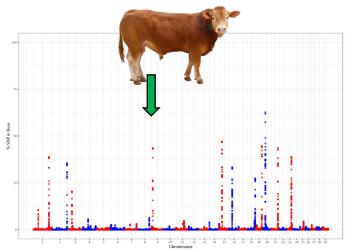


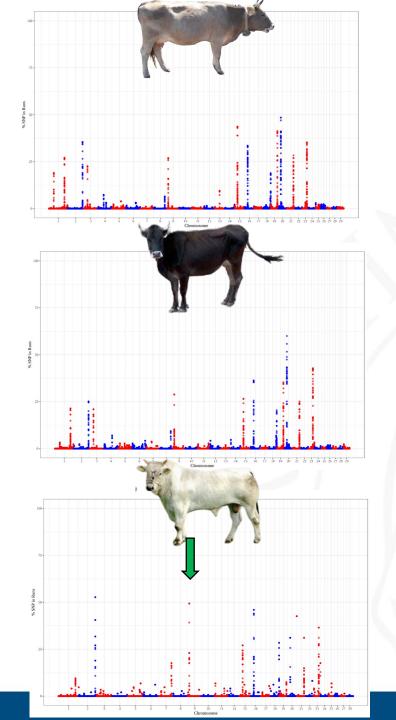



- 12-13 peaks were defined for each breed (except for CAL –lower).
- Peaks BTA15, BTA16, BTA20, and BTA23
 were identified in all breeds.
- Peaks on BTA2 and BTA21 were identified on cosmopolitan, CAL and SAB breeds
- Peak on BTA9 in LIM and CAL
- Peak on BTA 1 was identified only in LIM.

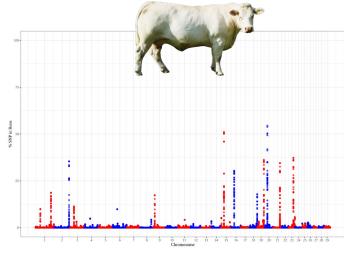
HRR

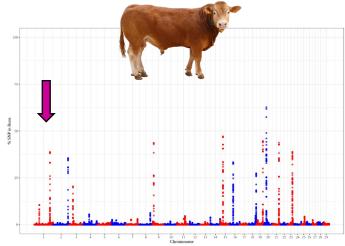


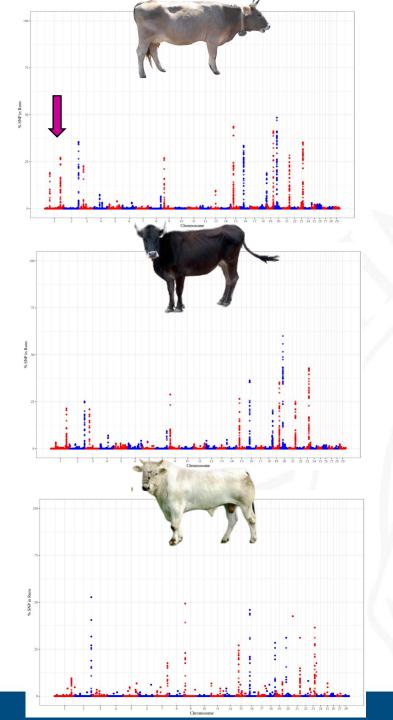

(0101010)


- 12-13 peaks were defined for each breed (except for CAL –lower).
- Peaks BTA15, BTA16, BTA20, and BTA23 were identified in all breeds.
- Peaks on BTA2 and BTA21 were identified on cosmopolitan, CAL and SAB breeds
- Peak on BTA9 in LIM and CAL
- Peak on BTA 1 was identified only in LIM.

HRR

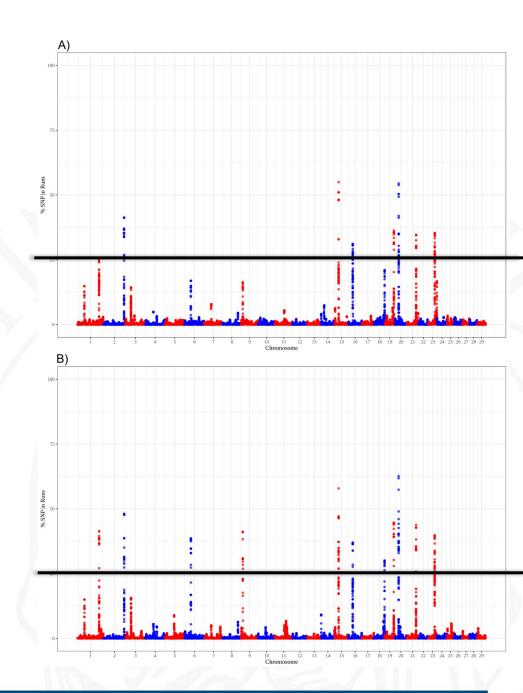





- 12-13 peaks were defined for each breed (except for CAL –lower).
- Peaks BTA15, BTA16, BTA20, and BTA23 were identified in all breeds.
- Peaks on BTA2 and BTA21 were identified on cosmopolitan, CAL and SAB breeds
- Peaks on BTA9 in LIM and CAL
- Peaks on BTA 1 was identified only in LIM.

HRR

- 12-13 peaks were defined for each breed (except for CAL –lower).
- Peaks BTA15, BTA16, BTA20, and BTA23 were identified in all breeds.
- Peaks on BTA2 and BTA21 were identified on cosmopolitan, CAL and SAB breeds
- Peaks on BTA9 in LIM and CAL
- Peaks on BTA1 was identified in LIM and SAB.


Genes within Significant HRR

Appling the threshold of 25%, 38 HRRs

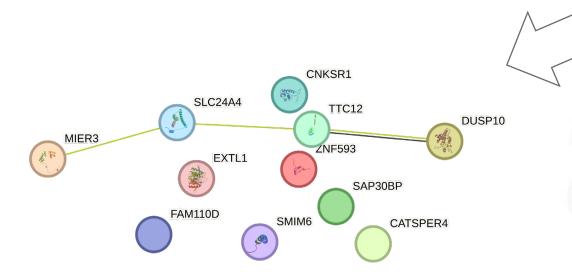
=

11 LIM, 8 CHA, 9 CAL, 8 SAB and 2 SAR

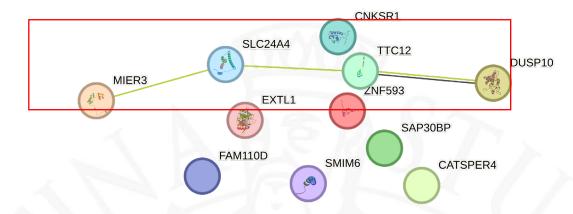
BTA:START-END	Genes	CAL	CHA	LIM	SAB	SAR
2:127476802-127540073	CATSPER4 CNKSR1 ZNF593 FAM110D	Х	X	Х	X	
2:127644712-127680352	EXTL1 SLC30A2	Χ	Χ	Х		
15:24209707-24238959	TTC12	Χ	Χ	Χ	Χ	
16:25915302-25954959	DUPS10	Χ	Χ	Χ	Χ	
19:56537361-56564441	SMIM6 SAP30BP RACQL5		Χ	Х	Х	
21:57719367-57750099	SLC24A4 MIR2284F	Х	Х	Х		
20:22151938-22171796	Downstream MIER3	Χ	Χ	Χ	Χ	Χ
23:39285499-39337614		Χ	Х	Х	Х	Χ

- 8 overlapped HRRs among breeds
- ☐ Collectively contained **14 unique genes**.

BTA:START-END	Genes	CAL	CHA	LIM	SAB	SAR
2:127476802-127540073	CATSPER4 CNKSR1 ZNF593 FAM110D	Х	X	X	Х	
2:127644712-127680352	EXTL1 SLC30A2	X	X	Χ		
15:24209707-24238959	TTC12	Χ	Χ	Х	Χ	
16:25915302-25954959	DUPS10	Χ	Χ	Χ	Χ	
19:56537361-56564441	SMIM6 SAP30BP RACQL5		Х	Х	X	
21:57719367-57750099	SLC24A4 MIR2284F	Х	Х	Х		
20:22151938-22171796	Downstream MIER3	X	Χ	Х	Χ	Χ
23:39285499-39337614		Χ	Χ	Χ	Χ	Χ


- 8 overlapped HRRs among breeds
- ☐ Collectively contained **14 unique genes**.

RTA:START-FND	Genes	CAI	CHA	LIM	SAB	SAR
2:127476802-127540073	CATSPER4 CNKSR1 ZNF593 FAM110D	X	X	X	х	
2:127644712-127680352	EXTL1 SLC30A2	Х	Х	Х		
15:24209707-24238959	TTC12	Χ	Χ	Χ	Х	
16:25915302-25954959	DUPS10	Χ	Χ	Х	Х	
19:56537361-56564441	SMIM6 SAP30BP RACQL5		Х	Х	Х	
21:57719367-57750099	SLC24A4 MIR2284F	Х	Х	Х		
20:22151938-22171796	Downstream MIER3	Χ	Χ	Х	Х	Х
23:39285499-39337614		Χ	Χ	Х	Х	Х


- 8 overlapped HRRs among breeds
- ☐ Collectively contained **14 unique genes**.

BTA:START-END G	enes	CAL	CHA	LIM	SAB	SAR
	CATSPER4	Х	Х	Х	Х	
2:127476802-127540073	CNKSR1					
2.12/4/0002-12/0400/3	ZNF593					
	FAM110D					
2:127644712-127680352	EXTL1	Χ	Χ	Χ		
2.12/044/12-12/000332	SLC30A2					
15:24209707-24238959	TTC12	Х	Х	Х	Х	
16:25915302-25954959	DUPS10	Х	Х	Χ	Х	
	SMIM6					
19:56537361-56564441	SAP30BP		Χ	Χ	Χ	
	RACQL5					
21:57719367-57750099	SLC24A4	Х	Х	Х		
	MIR2284F	^	^	^		
20:22151938-22171796	Downstrean M	IER3 X	Χ	Χ	Χ	Χ
23:39285499-39337614		X	Χ	Χ	Χ	Χ

- 1. TTC12 gene is particularly interesting due to its association with male fertility.
- **2. DUSP10** can either increase or decrease inflammation in response to factors like infection, injury, disease, or certain treatments
- **3. SLC24A4** is linked to body conformation (Yan et al., 2021) and calving interval traits in dairy cattle (Nayeri et al., 2016). Signatures of selection housing the SLC24A4 gene in dairy cows (Maiorano et al., 2018).
- **4. MIER3** gene was found to be located in proximity to the most significant SNP associated with survival (Illa et al., 2021)

Genes within Significant HRR

Other genes not in cluster: related to male and female fertility, and lactation traits

1. ZNF593 (Zinc Finger Protein 593) and **FAM110D** (Family With Sequence Similarity 110 Member D) were identified in a genomic region associated with lactation persistency in Holstein cattle (Do et al., 2017)

2. CATSPER4, which belongs to the CatSper family, plays a crucial role in sperm motility and sodium ion transport, making it related to male infertility (Sivakumar et al., 2018).

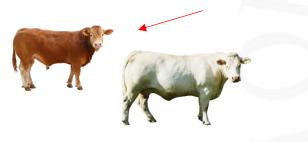
Conclusion

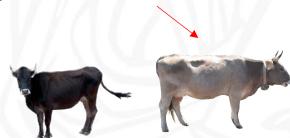
- Genetic distance confirms the divergence
- BUT the trends and distribution of heterozygosity paint a different picture.

Conclusion

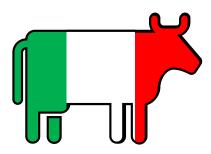
- Genetic distance confirms the divergence
- BUT the trends and distribution of heterozygosity paint a different picture.
 - Almost identical heterozygous genomic regions across four on five breeds were found.

Genes associated with fertility, survival, growth, and adaptation traits.


Conclusion


- Genetic distance confirms the divergence
- BUT the trends and distribution of heterozygosity paint a different picture.
 - Almost identical heterozygous genomic regions across all four breeds were found.

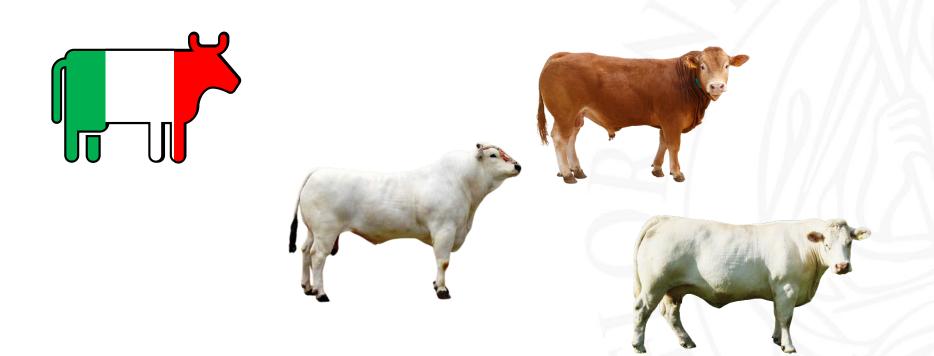
Genes associated with fertility, survival, growth, and adaptation traits.


Heterozygosity studies are fundamental both in **breeding programs** and in **conservation schemes**.

Further works

It could be interesting to extend this study to other cattle breeds to verify if these heterozygous regions are characteristic of **Italian** beef breeds.

Further works


It could be interesting to extend this study to other cattle breeds to verify if these heterozygous regions are characteristic of **Italian** beef breeds, or specific **beef** breeds.

Further works

It could be interesting to extend this study to other cattle breeds to verify if these heterozygous regions are characteristic of **Italian** beef breeds, or specific **beef** breeds, or in more general, in **cattle** population.

Thank you for your attention

Any Questions?

Spoke 7

This study was carried out within the Agritech National Research Center (Spoke 7) and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/2022, CN00000022).

"Nucleotide diversity values within regions that include HRR islands were compared with values from other genomic intervals (Fig. 6), resulting in significantly higher and more distinctly distributed π values within HRR regions".