

Identifying genetic loci influencing body weight in the endangered dual-purpose German Black Pied (DSN) cattle breed

Paula Korkuć*, Monika Reißmann, Gudrun A. Brockmann
Humboldt-Universität zu Berlin, Germany
*paula.korkuc@hu-berlin.de

Session 31 "Breeding schemes for development of small populations" Monday, Sept 2nd 2024

Introduction

Deutsches Schwarzbuntes Niederungsrind (DSN)


IN COMPARISON TO HOLSTEIN

- Endangered dual-purpose breed (~2.500 herdbook cows)
- Lower milk yield (305-day yield: 7,000-8,000 kg)
- Higher milk fat (4.3%) and protein (3.7%) content
- Good fertility, robustness

TO PRESERVE DSN

- Minimize inbreeding and maintain diversity ¹
- Breeding goals:
 - Maintain dual-purpose character
 - Improve milk yield and good milk fat and protein content ^{2, 3}
 - Maintain high muscularity
 - → Find markers associated with body weight and body weight gain

- ¹ Neumann et al., 2023, Frontiers in Genetics
- ² Korkuć et al., 2021, Frontiers in Genetics
- ³ Korkuć et al., 2023, *Genes*

Genotypes & traits

POPULATION

- 669 DSN bulls from one farm in Brandenburg
 - \rightarrow 396 from DSN200K chip ¹
 - → 273 from EuroG MD chip
- Imputation to sequence level using 304 sequenced DSN

Biallelic variants
MAF ≥ 5%
SNP call rate ≥ 90%

• 11.820.219 sequence variants

¹ Neumann et al., 2022, BMC Genomics

TRAITS

- Single weightings (HERDE software)
 - Body weight (BW)
 - BW_{0d} (ø 0 days)
 - BW_{3w} (ø 3 weeks)
 - BW_{7m}(ø 7 months)
 - BW_{18m} (ø 18 months)
 - Body weight gain (BWG)
 - $BWG_{0d-3w} = BW_{3w} BW_{0d}$
 - BWG_{0d-7m} BWG_{3w-7m}
 - BWG_{0d-18m} BWG_{3w-18m} BWG_{7m-18m}

Genome-wide association study

Model

population stratification birth season slaughter season genotype trait
$$\leftarrow Y = ps + by^* + bs^* + sy^* + ss^* + ag^* + gt + e$$
 birth year slaughter year age

* Best-fit models were estimated based on Akaike information criterion using R package AICcmodavg

SIGNIFICANCE

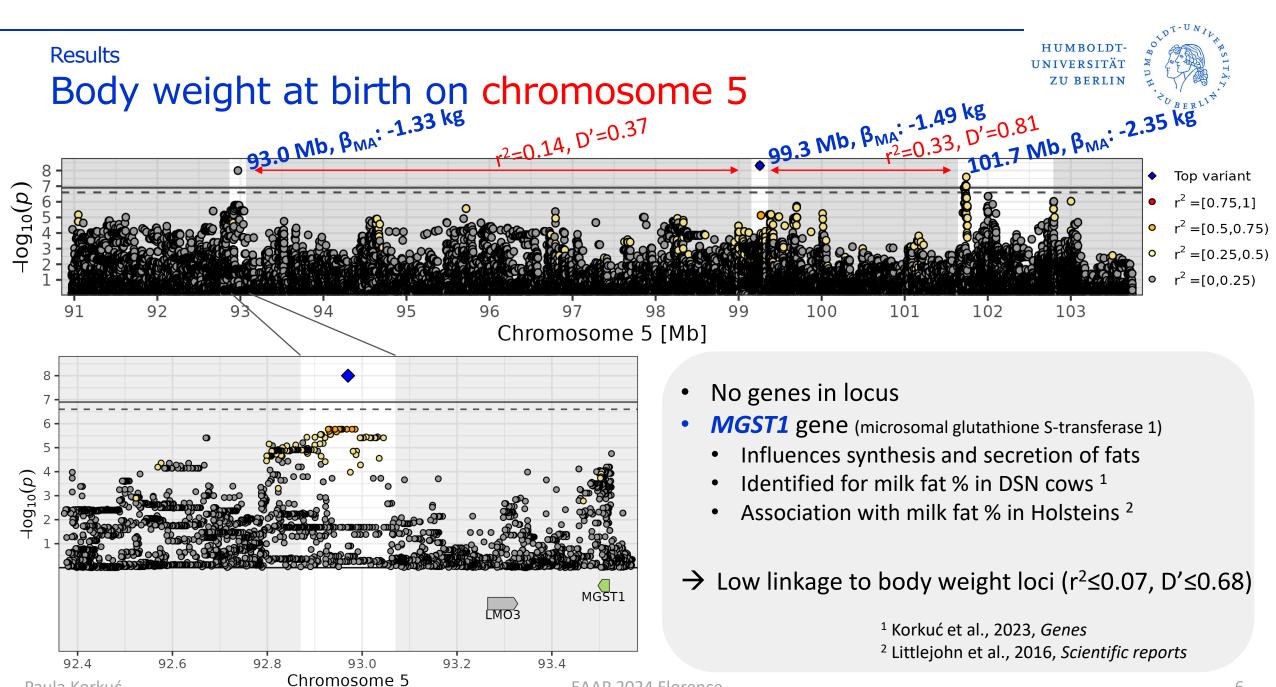
After correction for inflation factor $\lambda=1.2$ and Bonferroni with 423,453 independet variants ($r^2 \le 0.6$)

Suggestive associations: $p < 0.1 \rightarrow -\log_{10}(p) = 6.6$

Significant associations: $p < 0.05 \rightarrow -\log_{10}(p) = 6.9$

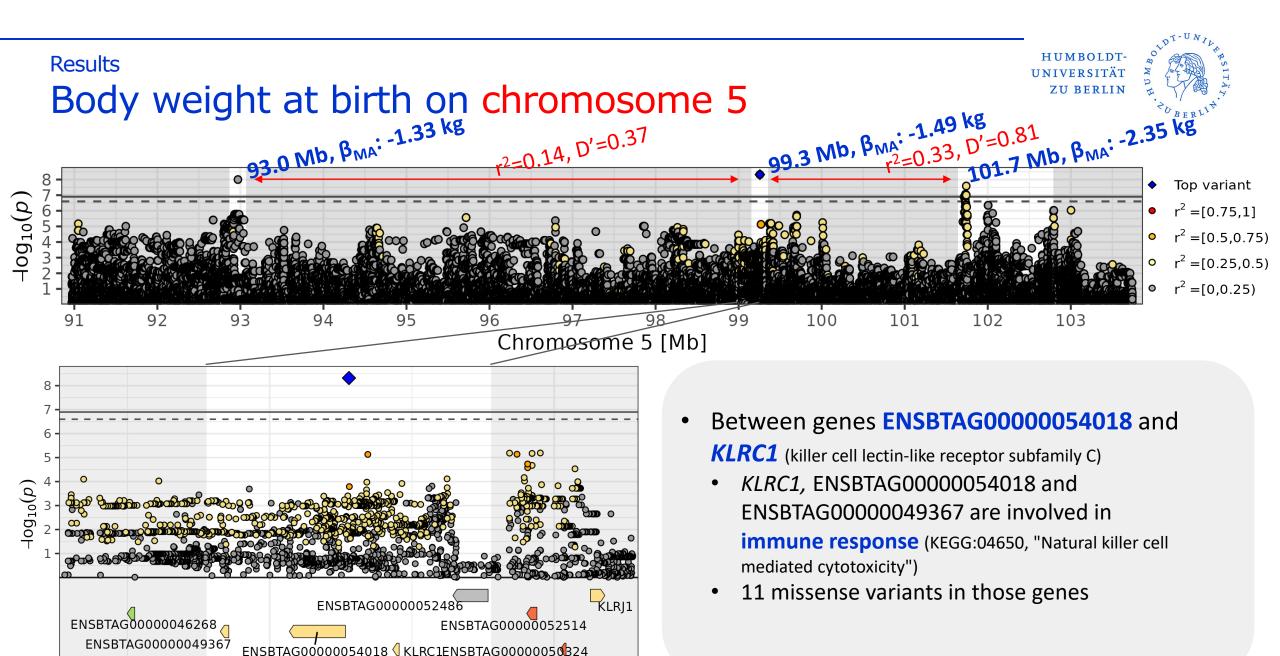
ANNOTATION

Genes (Ensembl release 110)
Impact of variants using VEP


Gene ontology enrichment analysis with g:Profiler Comparison to cattleQTLdb (release 54)

HUMBOLDT-UNIVERSITÄT ZU BERLIN

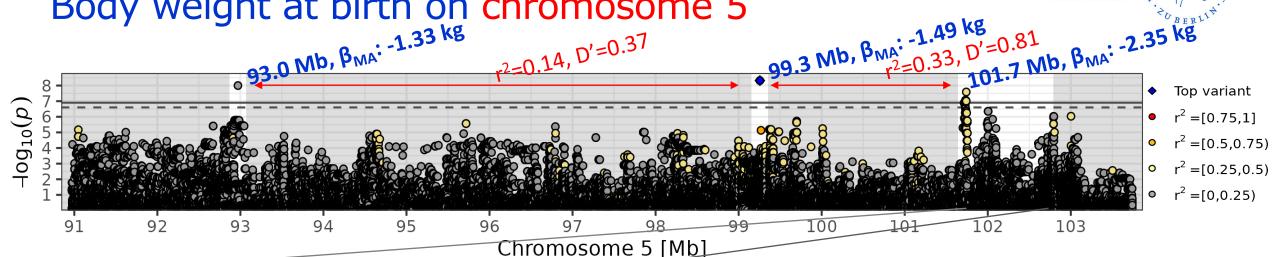
11 QTLs on 6 chromosomes

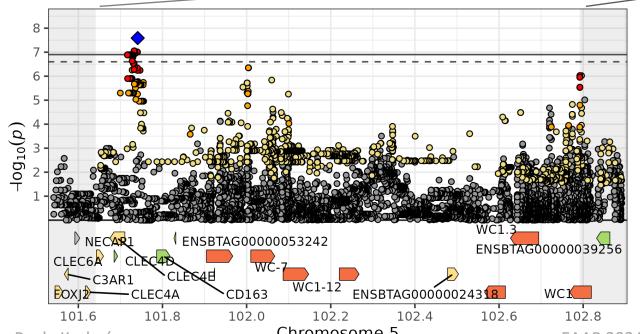

- 127 variants above suggestive threshold grouped into 11 QTLs → 8 significant QTLs
- QTLs defined with 1.5 LOD drop within 2 Mb

Trait	# SNPs	# QTLs	Chr 2	Chr 3	Chr 5	Chr 10	Chr 16	Chr 18
$\overline{BW_{0d}}$	82	5	58 Mb		93, 99, 102 Mb			43 Mb
BW _{3w}	8	3		93 Mb		52 Mb	14 Mb	
BW _{7m}	37	3		27 Mb , 44 Mb)	49 Mb		
BW _{18m}								
BWG _{0d-3w}								
BWG _{od-7m}	11	1				49 Mb		
BWG _{3.w-7.m}					and the last			
BWG _{0.d-18m}								
3w-18m.								
BWG _{7m-18m}								

EAAP 2024 Florence

Paula Korkuć




99.4

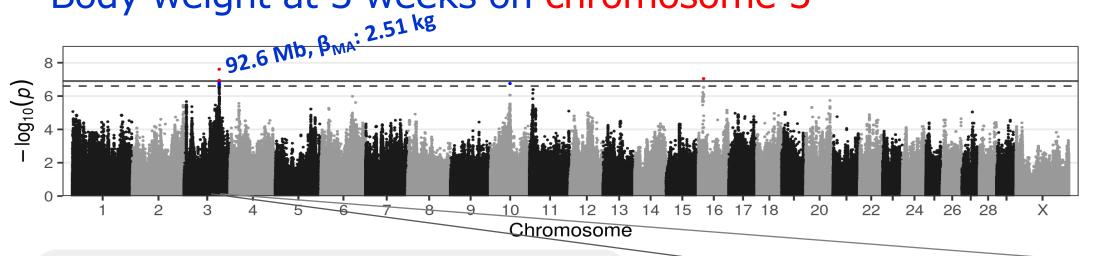
99.2

Between *CLEC4E* (C-type lectin domain family 4 member E) and *CD163* (CD163 molecule)

UNIVERSITÄT

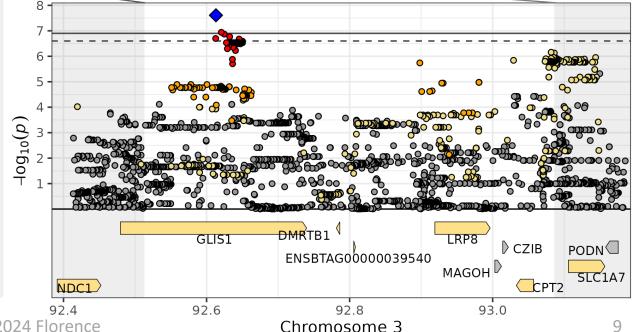
ZU BERLIN

- **CLEC...** genes involved in **immune response**
- Antifungal innate immune response (GO:0061760), defense response (GO:0006952), T cell activation involved in immune response (GO:0002286)
- Associated to "Length of productive life" in Holstein¹ and "Marbling score" in Hanwoo²


Chromosome 5 FAAP 2024 Florence Paula Korkuć

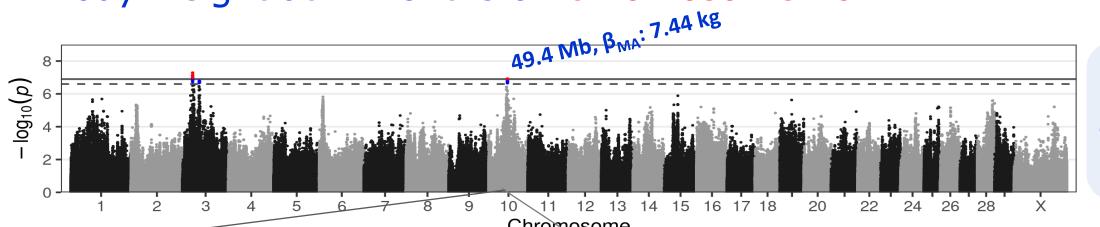
¹Cole et al., 2012, BMC Genomics, ²Li et al., 2020, Asian-Austr. J Anim Sci.

Results

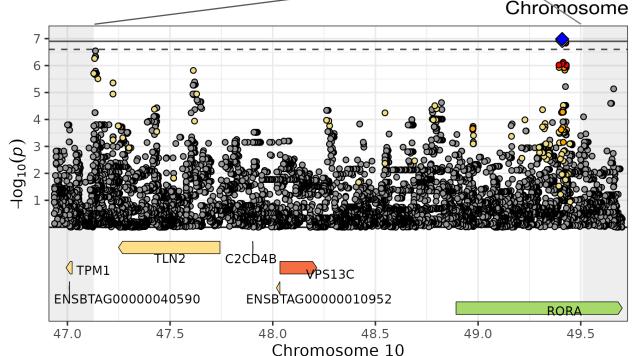

UNIVERSITÄT ZU BERLIN

Body weight at 3 weeks on chromosome 3

- Interesting candidate genes:
 - **GLIS1** (GLIS family zinc finger 1): TF regulating gene expression during cell differentiation
 - **LRP8** (LDL receptor related protein 8): Signal transduction, lysosomal degradation, migration of neurons
- Associated to "Length of productive life" in Holstein¹


¹Cole et al., 2012, BMC Genomics

Results


Body weight at 7 months on chromosome 10

Locus was also associated with BWG_{0d-7m}

- Interesting candidate genes:
 - RORA (RAR related orphan receptor A): Nuclear hormone receptor with wide range of biological processes
 - VPS13C (vacuolar protein sorting): Mitochondrion organization and lipid transport
- Associated to body weight and body weight gain in diverse breeds^{1,2} and "Marbling score" in Angus³

¹ Snelling et al., 2010, *J. Anim. Sci.*, ² Zhuang et al., 2020, *Genes* ³ Leal-Gutiérrez, 2020, *Front. Genet*.

Summary

New Loci

- Identification of 11 QTLs for body weight and body weight gain despite the relatively small sample size
- Most loci for growth not linked to milk production loci, except minimal linkage for loci on chromosome 5

CANDIDATE GENES

- KLRC1 and C-type lectin family genes suggest potential interplay between growth and health
- GLIS1 directly influences tissue formation and growth
- RORA and other genes (not shown) may affect growth and development through their roles in metabolic processes, cellular signaling and nutrient transport

CONCLUSIONS

- Knowledge of growth and milk loci can help to maintain dual-purpose character
- Selection for favored alleles can improve e.g. body weight at birth (caution to birth difficulties)
- Challenge to select for favorable alleles while maintaining diversity and avoiding inbreeding

Thank you for your attention!

Humboldt-Universität zu Berlin

Gudrun Brockmann

Monika Reißmann

Uwe Müller

Guilherme Neumann

RBB Rinderproduktion Berlin-Brandenburg GmbH

Jan-Hendrik Osmers

Cornelia Buchholz

Maria Thiele

DSN breeders

Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft