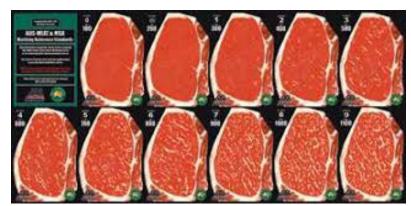
Prediction of consumer palatability in beef using visual marbling scores and chemical intramuscular fat percentage

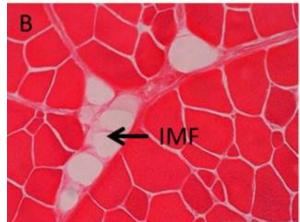
Garth Tarr



Sarah Stewart, Graham Gardner, Pete McGilchrist, David Pethick, Rod Polkinghorne, John Thompson

Visual marbling and carcass grading

- Visual representation of intramuscular fat (IMF%)
- Meat Standards Australia grading system
- Cut surface of the loin eye
- Subjective assessment of quantity and distribution
- Predictor of consumer palatability (Watson et al 2008, Smith et al 1984, Savell et al 1987, Platter et al 2003)



Intramuscular fat (IMF%) and eating quality

- Objective chemical measurement
- Positive effect on beef palatability
 - Tenderness, flavour, juiciness
- Describes approx. 15% of variation in consumer scores in beef (Thompson 2004).
- May not always be captured by visual grading at a single site
 - Three dimensional, small fat particles

Hypothesis 1

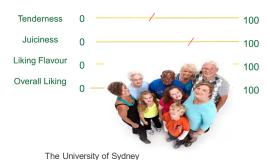
Higher IMF => higher eating quality

in the same way that

Higher MSA marbling => higher eating quality

How do we define eating quality?

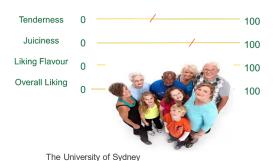
Tenderness Not Tender Very Tender **Juiciness** Not Juicy Very Juicy Liking of Flavour Dislike Extremely Like Extremely **Overall Liking** Dislike Extremely Like Extremely


The University of Sydney

Experimental design

MSA eating quality database

Eating quality (MQ4) scores



Experimental design

MSA eating quality database

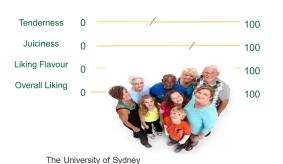
Eating quality (MQ4) scores

Anterior Striploin

M. longissimus

lumborum

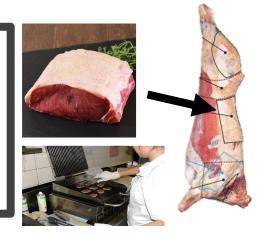
Aged 14 days Cook method = Grill



Experimental design

MSA eating quality database

Eating quality (MQ4) scores


n ~ 3000

Anterior Striploin

M. longissimus

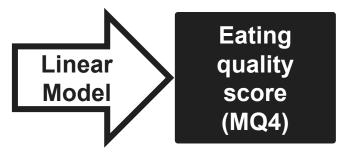
lumborum

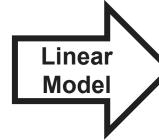
Aged 14 days Cook method = Grill

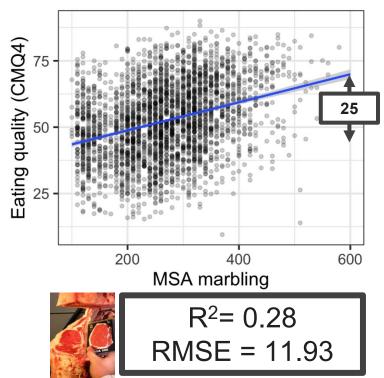
Chemical IMF data

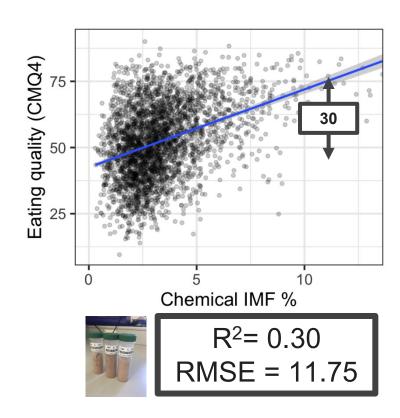
NIR spectroscopy

MSA model inputs Sex Hot carcass weight Hump height Feed type Hormone growth promotant status Subcutaneous rib fat depth Ossification score Ultimate pH The University of Sydney

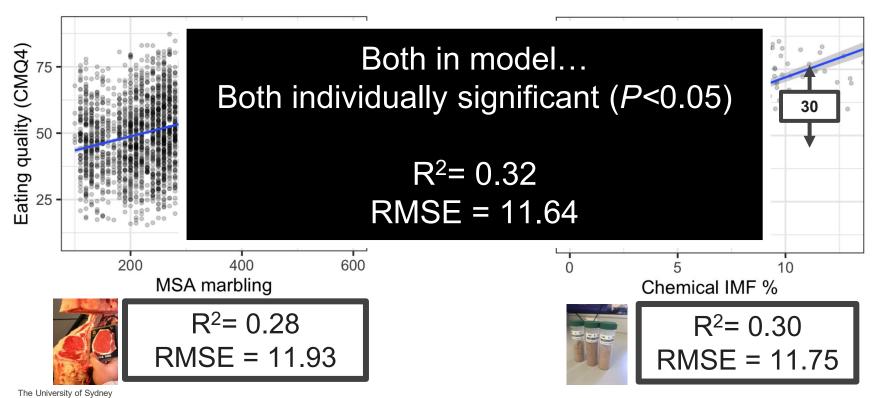

MSA model inputs Sex Hot carcass weight Hump height Feed type Hormone growth promotant status Subcutaneous rib fat depth Ossification score Ultimate pH The University of Sydney


MSA model inputs Sex Hot carcass weight Hump height Feed type Hormone growth promotant status Subcutaneous rib fat depth Ossification score Ultimate pH The University of Sydney


MSA model inputs Sex Hot carcass weight Hump height Feed type Hormone growth promotant status Subcutaneous rib fat depth Ossification score Ultimate pH The University of Sydney


Eating quality score (MQ4)

Results – MSA visual marbling



The University of Sydney

Results – Chemical IMF %

Results – Combined model

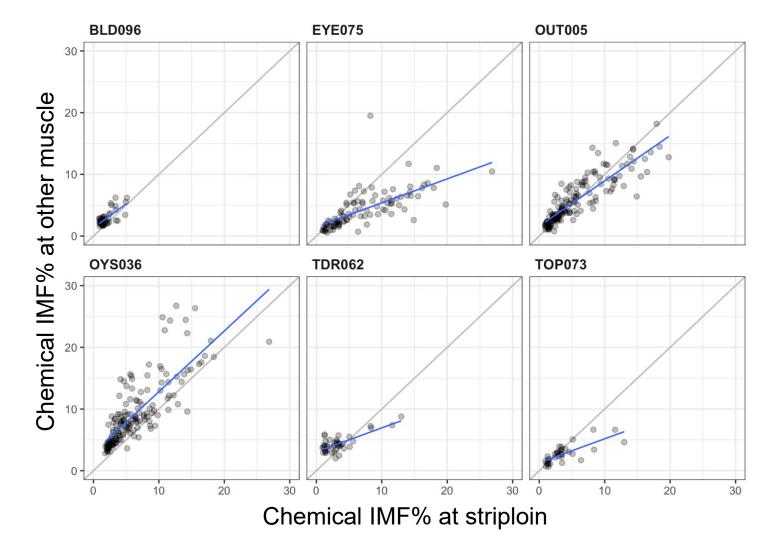
How important is marbling?

Without any marbling traits

R² = 0.21

With MSA marbling $R^2 = 0.28$

33% improvement



With IMF% $R^2 = 0.30$

43% improvement

Hypothesis 2

There is correlation between IMF in the striploin and IMF in other muscles

Why is this important?

- Correlation between muscles underpins cut x cook eating quality models.

Muscle	Days aged	n	MSA marbling R ²	Striploin IMF% R ²	Cut specific IMF% R ²
EYE075	7	59	0.07	0.05	0.12
OUT005	7	128	0.14	0.14	0.13
OUT005	28	59	0.15	0.23	0.23
OYS036	7	158	0.06	0.10	0.11

Where to next?

- AUS-MEAT accreditation of IMF% as a trait

- Accreditation of objective grading technologies

for IMF% prediction

- MSA model with IMF% as an input

- Non-cut surface IMF% prediction

Find out more

Stewart SM, Gardner GE, McGilchrist P, Pethick DW, Polkinghorne R, Thompson JM, Tarr G (2021). Prediction of consumer palatability in beef using visual marbling scores and chemical intramuscular fat percentage. *Meat Science* **181**, 108322.

Garth Tarr garth.tarr@sydney.edu.au