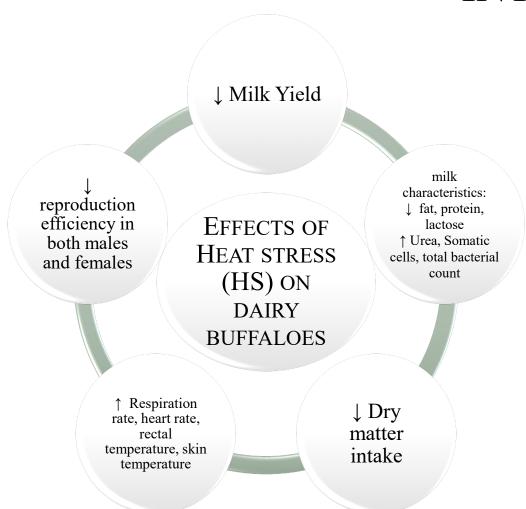
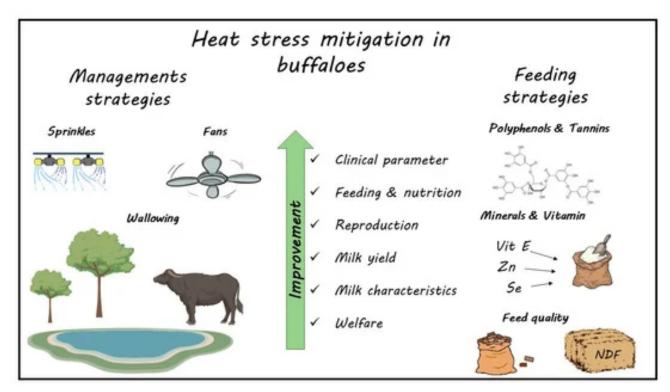


Effects of a nutritional supplement in Italian Mediterranean Buffalo exposed to heat stress

F. Petrocchi Jasinski¹, C. Evangelista², R. Steri³, M. Iacurto³, C. Petricca³, L. Basiricò¹, D. Meo Zilio³, U. Bernabucci¹

Contact: francesca.petrocchi@unitus.it




¹ University of Tuscia, Department of Agriculture and Forests Sciences, Via San Camillo de Lellis snc, 01100 Viterbo, Italy;

² University of Tuscia, Department for Innovation in Biological Agro-Food and Forest Systems, Via San Camillo de Lellis snc, 01100 Viterbo, Italy;

³ Council for Agricultural Research and Economics (CREA), Via salaria 31, 00015 Monterotondo, Italy

INTRODUCTION

(Petrocchi Jasinski et al., 2023)

Heat stress can be simply defined as a condition that occurs when an animal cannot dissipate an enought quantity of heat (Bernabucci et al., 2014)

AIM OF THE STUDY:

INVESTIGATE THE EFFECT OF A TWO DIFFERENT DOSES OF DIET SUPPLEMENT IN DAIRY BUFFALO BREEDING DURING HOT SEASON,

ON

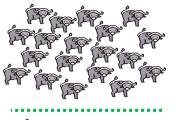
MILK YIELD AND QUALITY
APPARENT DIGESTIBILITY
ANIMAL BEHAVIOURS

MATERIALS & METHODS

WHERE:

CREA-ZA Tor Mancina farm, Rome

From June to September 2023 Total 93 days of experiment



Rumen Function Optimiser (RuFO)

calcium carbonate, maerl, wheat bran, inulin (chicory), yeasts (brewers' yeast), Mojave yucca, garlic dried, cayenne pepper

Control (C)
Total mixed ration

I I
Total mixed ration
+ 100g/head/day
of Rufo

T2
Total mixed ration
+ 200 g/head/day
of Rufo

Average±SD	C	T1	Т2
Buffaloes (n)	19	19	19
Days in milk (DIM)	82.89 ± 34.95	76.84 ± 41.05	78.79 ± 34.41
Daily milk yield (L)	9.17 ± 1.87	9.09 ± 2.62	9.13 ± 2.04
Parity (n)	3.21±1.40	3.05 ± 1.28	3.11±1.41

All 3 groups were kept in the same conditions, the only difference was in the supplementation.

Every two weeks: individual milk and total mixed ration samples were collected

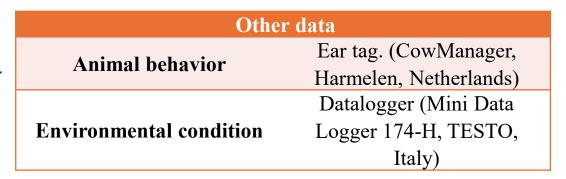
At the end: individual faeces sampling

Countinuously: milk production

	Total mixed ration	Faeces		
Ash	AOAC (1990)	AOAC (1990)		
Ash insoluble in hydrochloric acid (AIA)	ISO 5985 (1978)	ISO 5985 (1978)		
Crude protein (CP)	AOAC (2005)	AOAC (2005)		
Ether extract (EE)	AOAC (2000)	AOAC (2000)		
Crude fiber (CF)	AOAC (2005)			
Starch	AOAC (2005)	AOAC 2005		
Neutral detergent fiber (aNDF), acid detergent fiber (ADF), and acid detergent lignin (ADL)	Van Soest et al. (1991)	Van Soest et al. (1991)		
Physical characteristics	Penn State Particle Separator (19, 8, 4 and < 4 mm)			
Homogeneity index (HI) and sorting index (SI)	PoliSPEC ^{NIR} (ITPhotonics, Breganze, VI, Italy)			
physically effective NDF (peNDF)	Mertens (1997)			
Apparent digestibility	Fredin et al. (2014) (AIA as internal markers)			

Milk					
Milk was stored in 50 ml plastic tubes containing Bronopol® (2-					
Bromo-2-Nitropropane-1,3-Diol) at 4°C and analyses whitin 24-					
48	Sh				
Milk production	Milking system				
Fat, protein, lactose, casein,	FT-IR spectrophotometry -				
solid not fat, urea, and freezing	MilkoScanTM 7 RM (Foss				
point Analytics, Hillerød, Denmar					
Titratable acidity and pH	Potentiometric method				
	Fluoro-optoelectronics				
Samatia call counts (SCC)	method - FossomaticTM FC				
Somatic cell counts (SCC)	(Foss Analytics, Hillerød,				
	Denmark).				
Somatic cell score (SCS)	Wiggans and Shook, (1987)				
Energy corrected milk (ECM)	Campanile et al. (1998)				
	Formagraph instrument (Mape				
DCT 1-90 -90	System, Firenze, Italy)				
RCT, k20, a30	according to Zannoni and				
	Annibaldi (1981)				

RCT: rennet coagulation time (min)


k20: curd firming time (min)

a30: compactness of curd (mm)

Animal behavior and environmental condition continuosly recorded

Behaviour registered:

- Eating time
- Ruminating time
- Total movement
- Not active time

Data obtained were used to calculate temperature-humidity index (THI) according to the following formula (Vitali et al., 2009):

Statistical analysis was performed using Statistica 10 (Statsoft Inc, Tulsa, Oklahoma, USA). The approach adopted was a **nested** analysis of variance (**ANOVA**) in which "**animal ID**" (**random factor**) was nested into "**group**" factor. The other factor was "**sampling**". To test significance difference, Tukey test as post-hoc was performed.

Results are expressed as Lsmeans \pm SE, and significance was declared at p < 0.05.

$$Y_{ijk} = \mu + G_i + A_{j(i)} + S_k + \varepsilon_{ijk}$$

 Y_{ijk} is the dependent variable observed for the jj-th animal in the ii-th group at the kk-th sampling time. μ is the overall mean.

 G_i is the effect of the *i*i-th group (i=C,T1,T2).

 $A_{j(i)}$ is the effect of the jj-th animal nested within the ii-th group (random factor).

 S_k is the effect of the kk-th sampling time (k=1,2,3,...,7).

 ε_{ijk} is the random error associated with the observation Y_{ijk} .

RESULTS

Table 1. Physical-chemical composition of the total mixed ration among 3 groups.

	From start to July 11				From July 12 to end			
	(mean±SE)				(mean±SE)			
	C	T1	T2	p-value	C	T1	T2	p-value
HI	67.33 ± 1.93	63.13 ± 4.72	72.07 ± 5.72	ns	70.24 ± 5.61	68.16 ± 2.47	66.20 ± 1.69	ns
SI	66.83±17.57	76.77 ± 4.32	64.67 ± 10.95	ns	47.42 ± 7.87	57.64±6.78	46.64±7.26	ns
DM (%)	62.71 ± 1.29	62.48 ± 1.16	62.79 ± 1.46	ns	62.22 ± 1.06	63.29 ± 0.94	62.35 ± 0.93	ns
Ash (%)	9.66 ± 0.64	9.41 ± 0.65	9.71 ± 0.67	ns	9.24 ± 0.16	$9.46 \pm 0,15$	9.74 ± 0.17	ns
Crude protein (%)	13.56 ± 0.51	13.50 ± 0.40	13.69 ± 0.42	ns	14.86 ± 0.37	14.95 ± 0.37	14.99 ± 0.31	ns
Ether extract (%)	1.72 ± 0.16	1.66 ± 0.13	1.63±0.09	ns	1.91 ± 0.11	1.82 ± 0.08	1.85 ± 0.10	ns
Starch (%)	19.54 ± 0.90	18.81 ± 0.39	20.06 ± 0.32	ns	17.90 ± 0.42	18.41 ± 0.62	17.53 ± 0.57	ns
Crude fiber (%)	20.79 ± 0.68	20.79 ± 1.07	19.94±1.01	ns	22.78 ± 0.50	22.23 ± 0.41	22.17±0.43	ns
aNDF (%)	43.81 ± 1.50	46.05 ± 2.66	44.50 ± 1.40	ns	45.63 ± 0.52	45.37 ± 0.51	44.64 ± 0.94	ns
ADF (%)	31.13 ± 0.99	31.15±1.97	30.70 ± 1.25	ns	33.85 ± 1.39	33.90 ± 0.93	32.64 ± 0.99	ns
ADL (%)	5.23 ± 0.80	5.38 ± 1.07	5.25 ± 0.68	ns	6.00 ± 0.23	6.03 ± 0.16	5.86 ± 0.23	ns
S1 (%)	15.46 ± 1.09	14.76±0.53	16.75±1.24	ns	15.95 ± 1.28	15.27 ± 1.20	15.56±1.22	ns
S2 (%)	33.59 ± 2.32	34.23 ± 2.10	34.13 ± 2.62	ns	31.44 ± 1.22	31.22 ± 0.90	30.91 ± 0.93	ns
S3 (%)	21.98±1.13	21.75±1.20	21.49 ± 1.28	ns	21.12±0.56	21.16±0.49	21.04±0.43	ns
Bottom (%)	28.98 ± 1.74	29.25 ± 2.00	27.64 ± 1.50	ns	31.50 ± 0.92	32.35 ± 0.90	32.49 ± 0.89	ns
peNDF (%)	31.07±0.43	32.50±1.72	32.17±1.09	ns	32.40 ± 0.72	31.59±0.63	30.71±0.70	ns

HI=homogeneity index; SI=sorting index; DM=dry matter; NDF=neutral detergent fiber; ADF=acid detergent fiber; ADL=acid detergent lignin; S1-S2-S3-bottom=particles retained in the 19-8-4mm and bottom sieve; peNDF=physically effective NDF

The ration was similar to the 3 groups

Environmental condition

They were subjected to moderate stress (average THI > 80) for 3 days (21,22 and 24 July 2023).

Literature data: difficulty in establishing a THI threshold for heat stress dairy buffaloes; however Chaudhary et al. (2015) reported that for buffalo, a value of THI <72 is considered optimal, THI between 72 and 79 is considered mild stress, THI from 80 to 89 is considered moderate stress.

All 3 groups were in the some environmental condition

RuFO effects on: Milk yield and characteristics

8,8

8,6

8,4

0,0

ECM follow

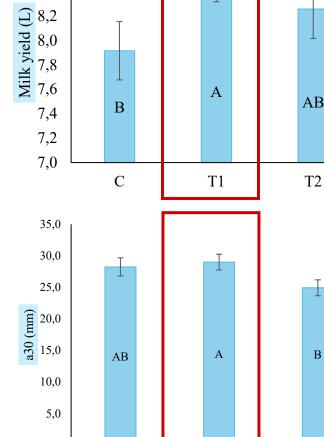
trend of MY

the same

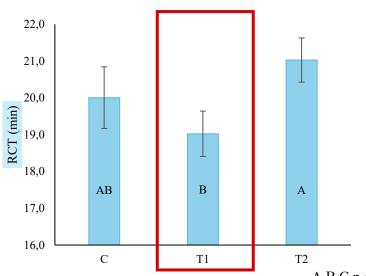
T2

T1

Parameters NOT influenced by treatment:
fat, protein, lactose, solid not fat and casein (%), freezing point (°C), urea (mg/dL), pH, titratable acidity (°SH), k20 (min)


350

300


50

AB

C

- Degirmencioglu et al., (2013) and Anjum et al., (2018): the administration of Saccharomyces cerevisiae to lactating buffaloes, increase milk production and decrease SCS.
- An et al., (2023): supplementation of Capsicum oleoresin, milk production increase compared to control.
- In all three studies: the main milk components as fat, protein and lactose were not affected by treatment.

SCC=somatic cell count; SCS=somatic cell score; a30=curd firmness; RCT=rennet coagulation time; k20: curd firming time

T2

В

T1

SCCx1000 (n/ml)

4,0 3,5

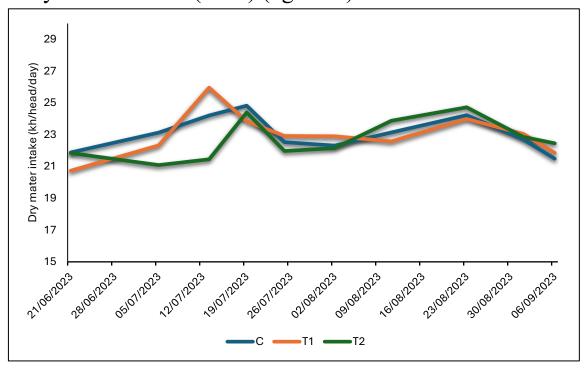
3,0

2,5

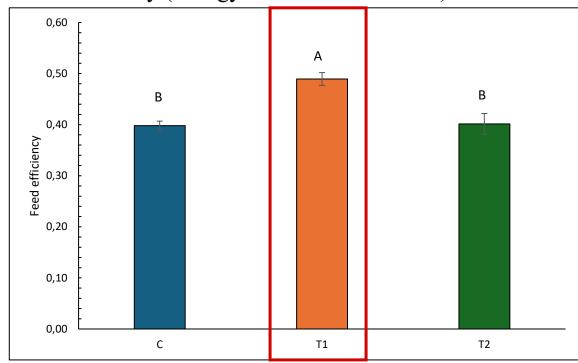
1,0

0,5

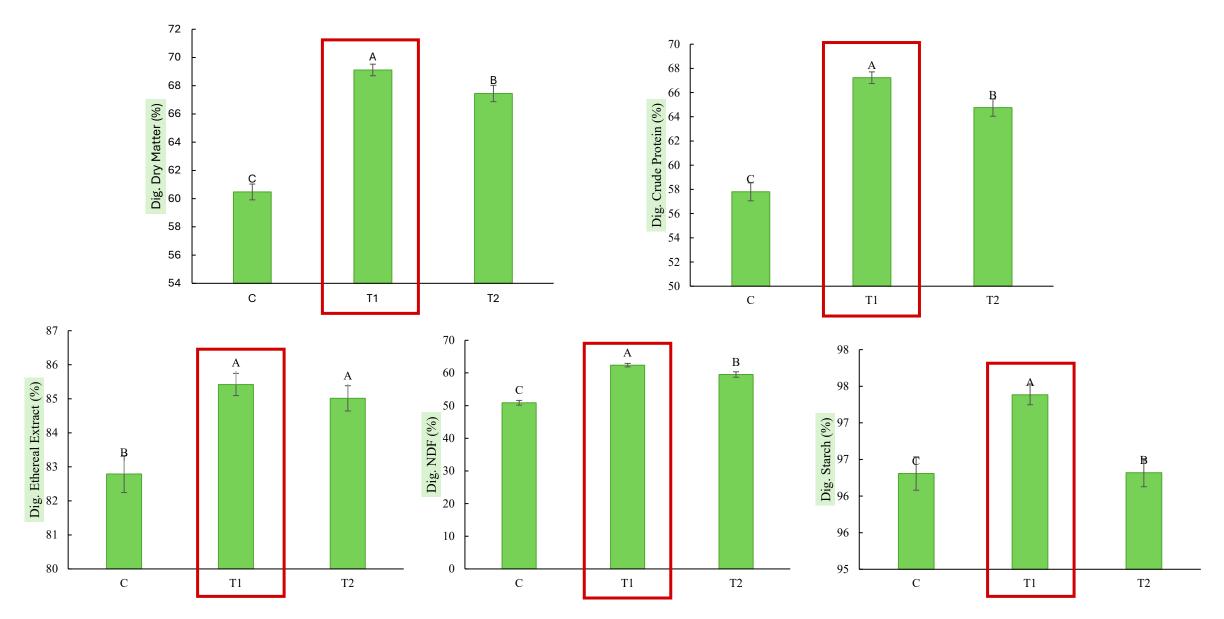
0,0


2,0 § 1,5

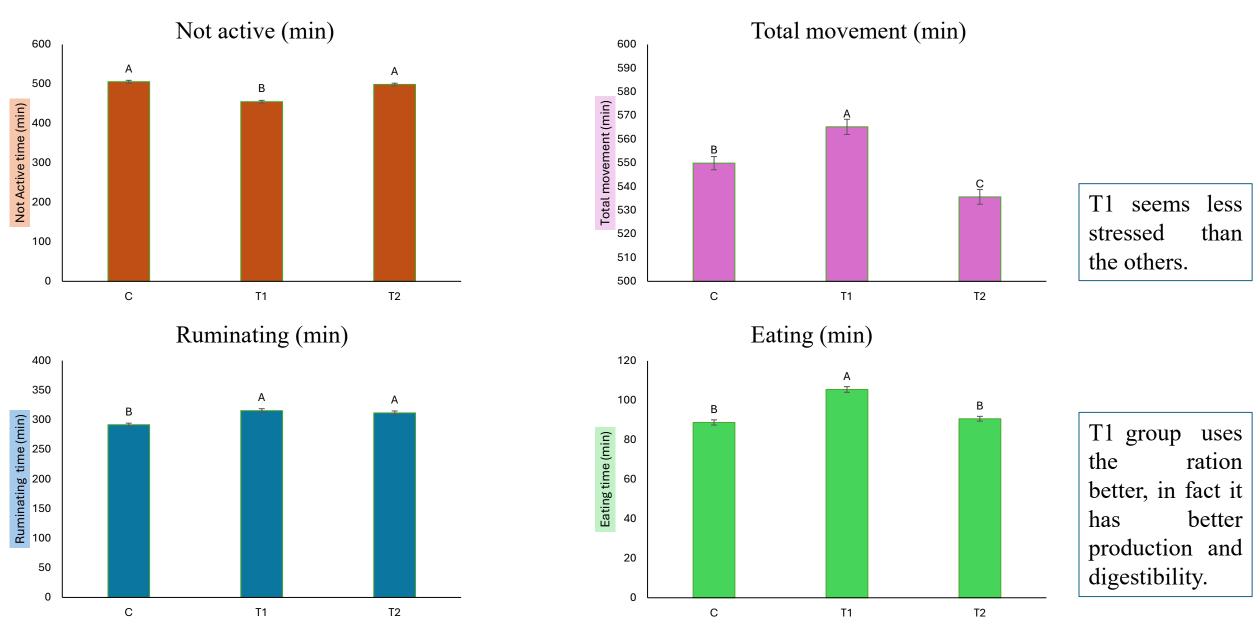
A,B,C p < 0.001



Dry matter intake (DMI) (kg/head)


Feed efficency (Energy corrected milk/DMI)

DMI was higher compared other studies (Salzano et al., 2021; Evangelista et al., 2022); feed efficiency was low compared to our previous study on dairy buffaloes (Evangelista et al., 2022).


A,B,C p < 0.001

RuFO effects on: Apparent digestibility of Dry matter, crude protein, ethereal extract, NDF and starch

The apparent digestibility are consistent with values reported by Bovera et al. (2007) and Guerra et al. (2024).

RuFO effects on: Animal Behaviours

Results agree with Meo Zilio et al. (2020) in a study conducted in the same farm some years earlier

CONCLUSIONS

Administration of RuFO to TMR in dairy buffaloes in hot season allowed to:

IMPROVE MILK YIELD

DECREASE SOMATIC CELLS

IMPROVE OF RHEOLOGICAL PARAMETERS (RCT AND A30)

IMPROVE NUTRIENT DIGESTIBILITY

IMPROVE FEED EFFICENCY

THANKS FOR YOUR ATTENTION

Effects of a nutritional supplement in Italian Mediterranean Buffalo exposed to heat stress

F. Petrocchi Jasinski¹, C. Evangelista², R. Steri³, M. Iacurto³,

C. Petricca³, L. Basiricò¹, D. Meo Zilio³, U. Bernabucci¹

Acknowledges:

References

- AOAC. (1990). Official Methods of Analysis (15th ed.). Association of Official Analytical Chemists:
- AOAC. (2000). Official Method of Analysis (Association of Official Analytical Chemists, Ed.; 17th ed.).
- AOAC. (2005). Official Methods of Analysis (Association of Official Analytical Chemists:, Ed.; 18th ed.).
- An, Z., Zhao, J., Zhang, X., Gao, S., Chen, C., Niu, K., Nie, P., Yao, Z., Wei, K., Riaz, U., & Yang, L. (2023). Effects of Capsicum oleoresin Inclusion on Rumen Fermentation and Lactation Performance in Buffaloes (Bubalus bubalis) during Summer: In Vitro and In Vivo Studies. Fermentation, 9(3). https://doi.org/10.3390/fermentation9030232
- Anjum, M. I., Javaid, S., Ansar, M. S., & Ghaffar, A. (2018). Effects of yeast (Saccharomyces cerevisiae) supplementation on intake, digestibility, rumen fermentation and milk yield in Nili-Ravi buffaloes. Iranian Journal of Veterinary Research, 19(2), 96–100.
- Campanile, G., De Filippo, C., Di Palo, R., Taccone, W., & Zicarelli, L. (1998). Influence of dietary protein on urea levels in blood and milk of buffalo cows. Livestock Production Science, 55, 135–143.
- Degirmencioglu, T., Ozcan, T., Ozbilgin, S., & Senturklu, S. (2013). Effects of yeast culture addition (Saccharomyces cerevisiae) to Anatolian water buffalo diets on milk composition and somatic cell count. Mljekarstvo, 63(1), 42–48.
- Fredin, S. M., Ferraretto, L. F., Akins, M. S., Hoffman, P. C., & Shaver, R. D. (2014). Fecal starch as an indicator of total-tract starch digestibility by lactating dairy cows. Journal of Dairy Science, 97(3), 1862–1871. https://doi.org/10.3168/jds.2013-7395
- ISO 5985. (1978). Animal feeding stuffs Determination of ash insoluble in hydrochloric acid. https://standards.iteh.ai/catalog/standards/sist/c521c2b6-a747-437e-b853-
- Mertens, D. R. (1997). Creating a System for Meeting the Fiber Requirements of Dairy Cows. Journal of Dairy Science, 80(7), 1463–1481. https://doi.org/10.3168/jds.S0022-0302(97)76075-2
- Meo Zilio, D., Steri, R., Iacurto, M., Catillo, G., Ba-Rile, V., Chiariotti, A., Cenci, F., Chiara, M., Mantia, L., & Buttazzoni, L. (2020). Precision Livestock Farming For Mediterranean Water Buffalo: Some Applications And Opportunities From The Agridigit Project. In M. C. E. Biocca, M. Cecchini, S. Failla, & E. Romano (Eds.), Safety, Health and Welfare in Agriculture and Agro-food Systems SHWA. Lecture Notes in Civil Engineering, vol 252 (Vol. 252). Springer, CHam. https://doi.org/10.1007/978-3-030-98092-4_5
- Petrocchi Jasinski, F., Evangelista, C., Basiricò, L., & Bernabucci, U. (2023). Responses of Dairy Buffalo to Heat Stress Conditions and Mitigation Strategies: A Review. In Animals (Vol. 13, Issue 7). MDPI. https://doi.org/10.3390/ani13071260
- Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- Wiggans, G. R., & Shook, G. E. (1987). A Lactation Measure of Somatic Cell Count. Journal of Dairy Science, 70(12), 2666-2672. https://doi.org/10.3168/jds.S0022-0302(87)80337-5
- Zannoni, M., & Annibaldi, S. (1981). Standardization of the renneting ability of milk by Formagraph. Scienza e Tecnica Lattiero-Casearia, 32(2), 79–94.

Supplemental material:

Total mixed basal ration composition

	From start to July 11	From July 12 to end
	(kg/head/d)	(kg/head/d)
Mixed hay	8	8
Corn flour	3	4.50
Triticale silage	20	20
Barley grain	3.50	4
Sorghum grain	1	-
Soy flour	3.50	3.50
Commercial additives:*		
a)	0.65	0.65
b)	0.30	0
c)	0.65	0.65
Total	40.60	41.30

Rufo © (AHV, Piacenza, Italy):

calcium carbonate, maerl, wheat bran, inulin (chicory), yeasts (brewers' yeast), Mojave yucca, garlic dried, cayenne pepper

*Composition:

- a) calcium carbonate, common wheat tritium, sodium chloride, dicalcium phosphate, sodium bicarbonate, magnesium oxide, Vitamin A, D3, E, B1, B2, B6, B12, niacin, choline chloride, manganous sulphate monohydrate, iron sulphate monohydrate, copper sulphate pentahydrate, zinc sulphate monohydrate, potassium iodide, sodium selenite, D-L methionine.
- b) Calcium salts of palm oil fatty acids, sugar, zinc
- c) Sodium bicarbonate, calcium carbonate, sodium chloride, calcium phosphate, common wheat tritium, zinc oxide, urea.

Supplemental material: TMR

	From start to July 11	From July 12 to end	p-value
	(mean±SE)	(mean±SE)	p-vatue
H.I.	67.51±2.56	68.20±2.01	ns
S.I.	69.42 ^A ±6.38	50.57 ^B ±4.13	<0.05
DM (%)	62.66±0.66	62.62±0.55	ns
Ash (%)	9.59±0.33	9.48±0.10	ns
Crude protein (%)	13.58 ^B ±0.22	14.93 ^A ±0.19	<0.01
Ether extract (%)	1.67±0.07	1.86±0.05	ns
Starch (%)	19.47 ^A ±0.35	17.95 ^B ±0.31	<0.01
Crude fiber (%)	20.51 ^B ±0.49	22.39 ^A ±0.25	<0.01
NDF (%)	44.79±1.02	45.21±0.39	ns
ADF (%)	30.99 ^B ±0.74	33.46 ^A ±0.63	<0.05
ADL (%)	5.29 ^B ±0.43	5.96 ^A ±0.12	<0.05
S1 (%)	15.66±0.58	15.59±0.68	ns
S2 (%)	33.98 ^A ±1.18	31.19 ^B ±0.57	<0.05
S3 (%)	21.74±0.61	21.10±0.27	ns
Bottom (%)	28.62 ^B ±0.91	32.11 ^A ±0.51	<0.01
peNDF (%)	31.91±0.64	31.57±0.40	ns

Supplemental material: Milk results

	С	T1	T2	p-value
Milk yield (L)	7.92 ^B ±0.24	8.51 ^A ±0.20	8.26 ^{AB} ±0.24	<0.001
Fat (%)	7.58±0.13	7.42±0.12	7.55±0.13	ns
Protein (%)	4.63±0.03	4.68±0.03	4.66±0.03	ns
Lactose (%)	4.47±0.03	4.47±0.03	4.47±0.03	ns
SNF (%)	9.86±0.05	9.92±0.05	9.96±0.05	ns
ECM (kg/head/day)	10.86 ^b ±0.55	12.16 ^a ±0.53	11.72 ^{ab} ±0.62	<0.05
SCC×1000 (n/mL)	214.52 ^{AB} ±61.22	120.81 ^B ±14.66	279.43 ^A ±42.05	<0.01
scs	3.05 ^B ±0.09	2.81 ^C ±0.07	3.39 ^A ±0.09	<0.001
Freezing point (°C)	-0.512±0.002	-0.509±0.002	-0.515±0.002	ns
Urea (mg/dL)	48.24±0.77	46.78±0.67	47.28±0.71	ns
Casein	3.69±0.04	3.74±0.04	3.76±0.04	ns
рН	6.62±0.01	6.63±0.01	6.64±0.01	ns
Titratable acidity (°SH/100mL)	7.45±0.11	7.38±0.09	7.45±0.11	ns
RCT (min)	20.01 ^{AB} ±0.84	19.02 ^B ±0.62	21.03 ^A ±0.60	<0.01
k20 (min)	4.90±0.34	4.88±0.28	5.55±0.32	ns
a30 (mm)	28.23 ^{AB} ±1.44	28.99 ^A ±1.25	24.93 ^B ±1.26	<0.01
a60 (mm)	39.41±0.99	37.83±0.89	39.82±0.84	ns

Results

Behavior

	С	T1	T2	p-value
Not active time (min)	505.68 ^A ± 3.46	455.13 ^B ± 3.27	498.67 ^A ± 3.23	<0.01
Total movement (min)	$549.89^{B} \pm 2.79$	565.21 ^A ± 3.21	535.65 ^C ± 3.11	<0.01
Eating time (min)	88.82 ^B ± 1.32	105.53 ^A ± 1.45	90.70 ^B ± 1.21	<0.01
Ruminating time (min)	291.67 ^B ± 2.67	315.39 ^A ± 3.39	311.65 ^A ± 3.26	<0.01

Similar results to those reported by (Meo Zilio et al., 2020) in a study conducted in the same farm some years earlier