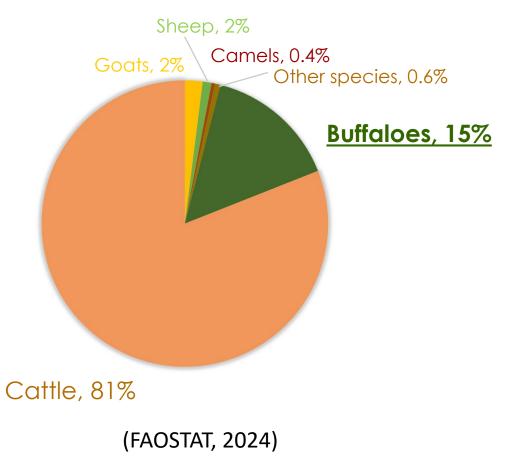
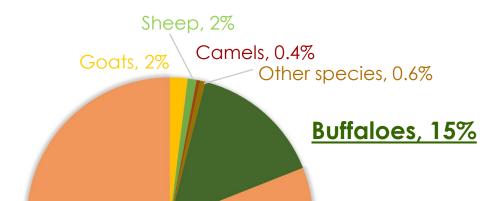


Prediction of blood parameters of buffaloes from milk mid-infrared spectra


<u>Silvia Magro</u> ¹, Sergio Esposito ², Gianluca Neglia ², Giovanni Niero¹, Massimo De Marchi ¹

¹ Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Italy

² Department of Veterinary Medicine and Animal Production, Federico II University, Napoli, Italy


World milk production:

World milk production:

In Italy:

'Mozzarella di Bufala Campana' cheese

Protected Designation of Origin (PDO) by the European Community (Regulation 1107/96 of 12 June 1996)

Cattle, 81%

(FAOSTAT, 2024)

Progressive intensification of the system:

- an increase in the size of the herd
- the adoption of intensive/semi-intensive farming techniques (originally intended for cattle)

Progressive intensification of the system:

- an increase in the size of the herd
- the adoption of intensive/semi-intensive farming techniques (originally intended for cattle)

- ✓ maximize the efficiency of the dairy sector
- ✓ improve the yield and quality of milk and cheese

Progressive intensification of the system:

- an increase in the size of the herd
- the adoption of intensive/semi-intensive farming techniques (originally intended for cattle)

✓ improve the yield and quality of milk and cheese

Management issues that also impact animal welfare

and health

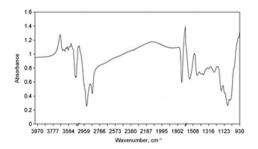
Blood metabolic profile testing allows for monitoring **metabolic health** and **nutritional status**.

- high costs
- labour
- animals' stress

conducting extensive blood analyses on a large scale

Blood metabolic profile testing allows for monitoring **metabolic health** and **nutritional status**.

- high costs
- labour
- animals' stress



conducting extensive blood analyses on a large scale

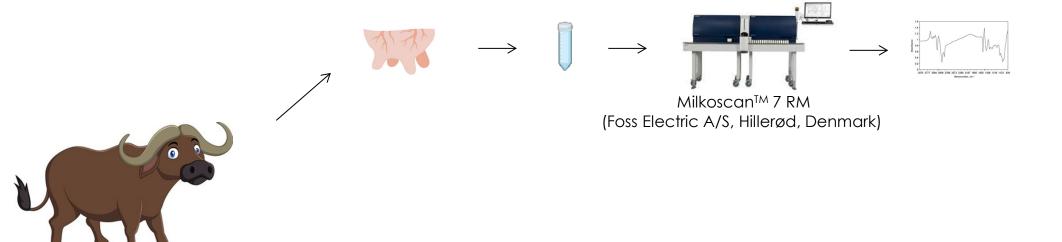
Utilizing mid-infrared (MIR) spectra of milk to predict blood traits may present an effective opportunity.

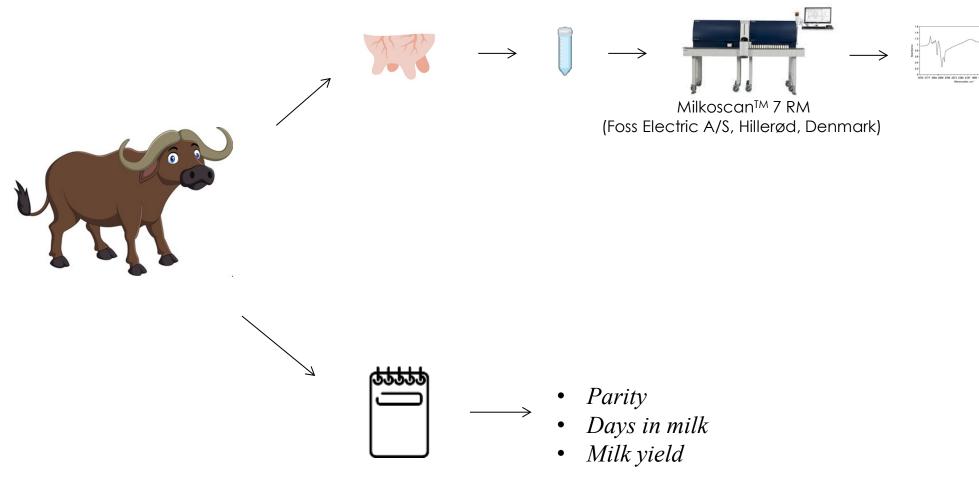
MIA

The present study aims to test the ability of MIR to predict blood traits

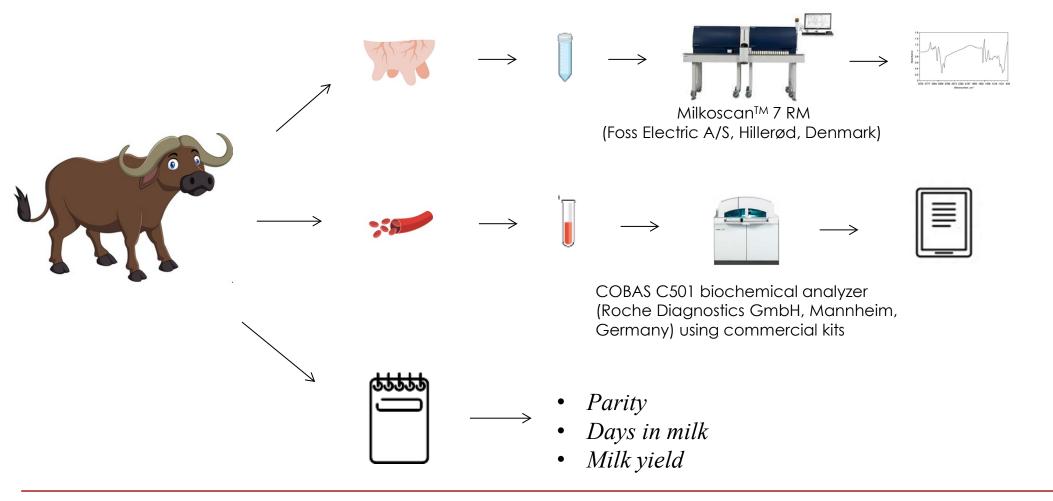
using milk spectra collected from the same buffalo.

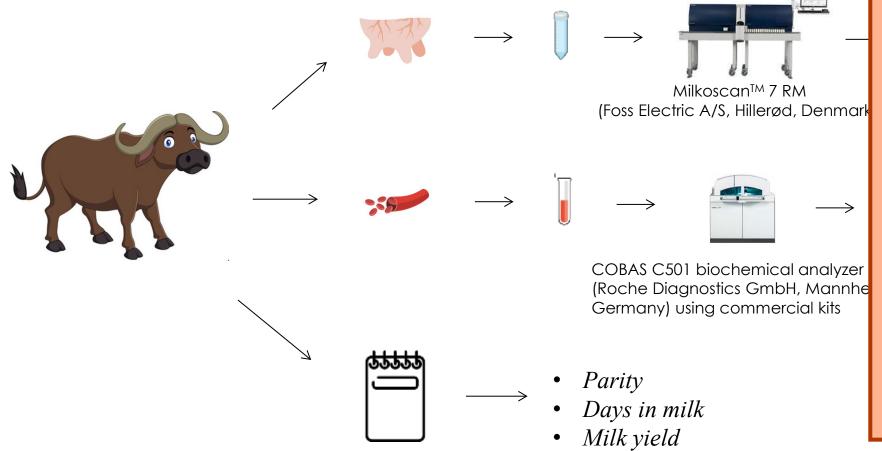
310 buffaloes


9 farms


From February to September 2022

Individual blood and milk samples were collected during the morning milking.





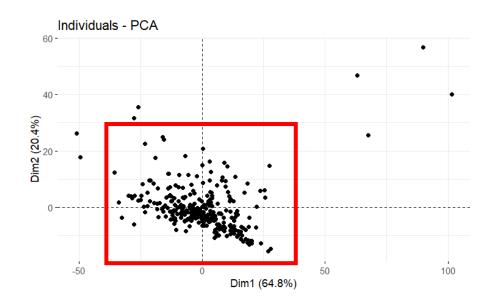
Enzyme activities:

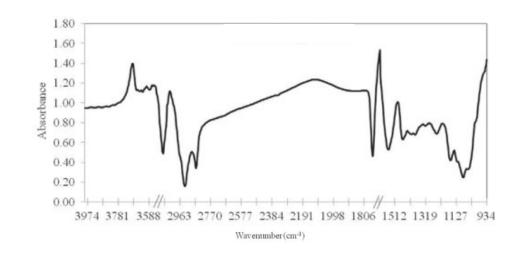
- Alanine transaminase (ALT, U/L)
- Aspartate aminotransferase (AST, U/L)
- Gamma-glutamyl transferase (GGT, U/L)
- Alkaline phosphatase (ALP, U/L)
- Lactate dehydrogenase (LDH, U/L)
- Creatine kinase (CK, U/L)

Blood traits:

- Urea, mg/dL
- Creatinine, mg/dL
- Glucose, mg/dL
- Non-esterified fatty acids (NEFA, mmol/L)
- Total bilirubin (TBIL, mg/dL)
- Cholesterol, mg/dL
- Triglyceride, mg/dL

Protein profile


- Total protein, g/dL
- Albumin, g/dL
- Globulin, g/dL
- Albumin to globulin



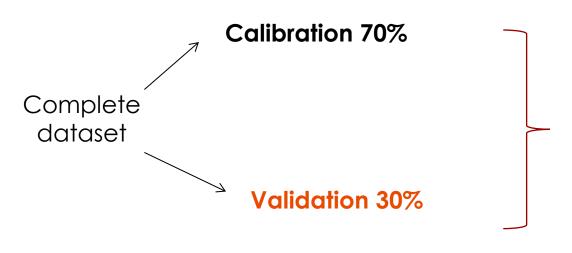
Mid-infrared prediction models

Spectral regions known to be associated with noisy water absorption wavelengths were discarded

-> leading to 338 wavelengths

Preliminary analysis of the spectral data was conducted using <u>principal component analysis (PCA)</u> to identify anomalous samples in terms of the MIR spectrum -> **8 spectra were discarded**

For non-distributed blood traits, a logarithmic transformation was applied (CK, NEFA; TBILT).



Mid-infrared prediction models

The **partial least squares (PLS)** analysis was carried out using the 'trainControl' function available in the R package 'caret':

- ✓ The models were fine-tuned using leave-one-out cross-validation, and the number of latent variables was set automatically but capped at a maximum of 15 to avoid overfitting.
- ✓ Spectral data points were centered and scaled.

Fitting statistics of the PLS model:

- Coefficient of determination (R²)
- Standard error

Descriptive statistics

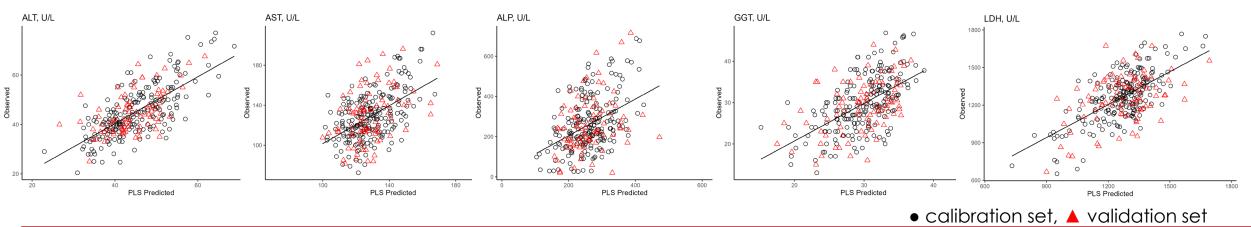
Blood trait	Mean (SD)	Range	CV, %
Enzyme activities			
ALT, U/L	45.17 (10.97)	17.30 - 94.00	24.3
AST, U/L	130.50 (28.95)	63.60 - 327.00	22.2
ALP, U/L	287.94 (189.90)	19.74 - 1,528.00	66.0
GGT, U/L	30.52 (8.06)	13.00 - 66.02	26.4
LDH, U/L	1,256.22 (205.12)	652.00 - 1,845.00	16.3
CK, U/L	178.00 (76.65)	53.00 - 793.00	43.1
Blood traits			
Urea, mg/dL	60.01 (16.83)	21.00 - 129.90	28.0
Creatinine, mg/dL	1.62 (0.32)	0.90 - 2.70	19.8
Glucose, mg/dL	67.34 (11.92)	25.30 - 115.00	17.7
NEFA, mmol/L	0.95 (0.94)	0.07 - 3.16	98.9
TBIL, mg/dL	0.27 (0.30)	0.00 - 4.34	111.1
Cholesterol, mg/dL	122.22 (32.50)	38.90 - 283.00	26.6
Triglyceride, mg/dL	18.57 (12.45)	0.00 - 45.10	67.0
Protein profile			
Total protein, g/dL	6.93 (0.72)	4.73 - 8.73	10.4
Albumin, g/dL	3.40 (0.26)	2.55 - 4.07	7.6
Globulin, g/dL	3.53 (0.57)	2.18 - 5.05	16.1
Albumin-to-globulin	0.99 (0.15)	0.59 - 1.57	15.2

CV, coefficient of variation

Descriptive statistics

Blood trait	Mean (SD)	Range	CV, %
Enzyme activities			
ALT, U/L	45.17 (10.97)	17.30 - 94.00	24.3
AST, U/L	130.50 (28.95)	63.60 - 327.00	22.2
ALP, U/L	287.94 (189.90)	19.74 - 1,528.00	66.0
GGT, U/L	30.52 (8.06)	13.00 - 66.02	26.4
LDH, U/L	1,256.22 (205.12)	652.00 - 1,845.00	16.3
CK, U/L	178.00 (76.65)	53.00 - 793.00	43.1
Blood traits			
Urea, mg/dL	60.01 (16.83)	21.00 - 129.90	28.0
Creatinine, mg/dL	1.62 (0.32)	0.90 - 2.70	19.8
Glucose, mg/dL	67.34 (11.92)	25.30 - 115.00	17.7
NEFA, mmol/L	0.95 (0.94)	0.07 - 3.16	98.9
TBIL, mg/dL	0.27 (0.30)	0.00 - 4.34	سرا 111.1
Cholesterol, mg/dL	122.22 (32.50)	38.90 - 283.00	26.6
Triglyceride, mg/dL	18.57 (12.45)	0.00 - 45.10	67.0
Protein profile			
Total protein, g/dL	6.93 (0.72)	4.73 - 8.73	10.4
Albumin, g/dL	3.40 (0.26)	2.55 - 4.07	7.6
Globulin, g/dL	3.53 (0.57)	2.18 - 5.05	16.1
Albumin-to-globulin	0.99 (0.15)	0.59 - 1.57	15.2

CV, coefficient of variation


Enzyme activities

Trait	11/	Calibra	tion (70%)	Validation (30%)		
II'dii	LV	R ² C	SE _C	R^2_V	SE _V	
ALT, U/L	10	0.51	6.87	0.35	7.90	
AST, U/L	9	0.33	19.83	0.15	23.92	
ALP, U/L	6	0.20	118.21	0.14	127.53	
GGT, U/L	6	0.36	5.28	0.21	6.08	
LDH, U/L	11	0.47	138.73	0.26	176.44	
Log ₁₀ CK	8	0.37	0.11	0.14	0.13	

2.6 - 2.4 - 2.6 - 2.4 - 2.8 - 2.5 - 2.4 - 2.8 - 2.5 - 2.4 - 2.8 - 2.5 - 2.4 - 2.8 - 2.5 -

Log10 CK

LV = Latent Variables

Enzyme activities

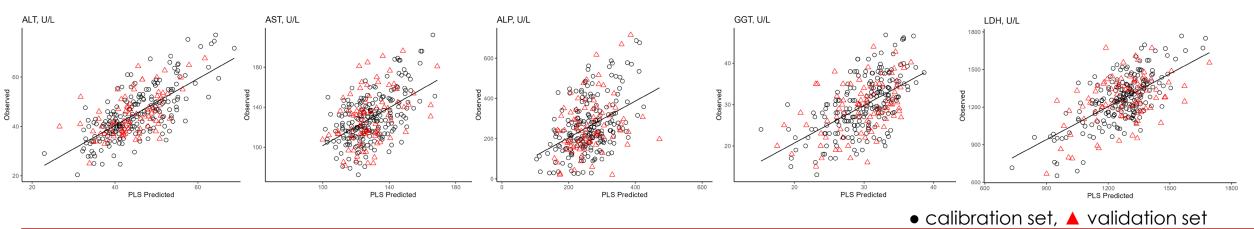
Trait	LV	Calibra	tion (70%)	Validation (30%)		
ITAII	LV	R ² C	SE _C	R^2_V	SE _V	
ALT, U/L	10	0.51	6.87	0.35	7.90	
AST, U/L	9	0.33	19.83	0.15	23.92	
ALP, U/L	6	0.20	118.21	0.14	127.53	
GGT, U/L	6	0.36	5.28	0.21	6.08	
LDH, U/L	11	0.47	138.73	0.26	176.44	
Log ₁₀ CK	8	0.37	0.11	0.14	0.13	

Log 10 CK

2.6

2.4

2.4

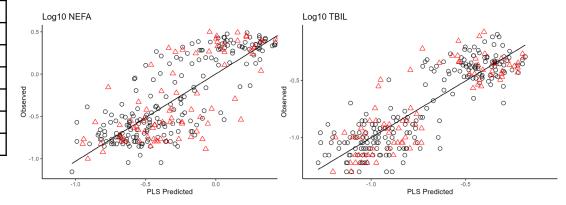

2.0

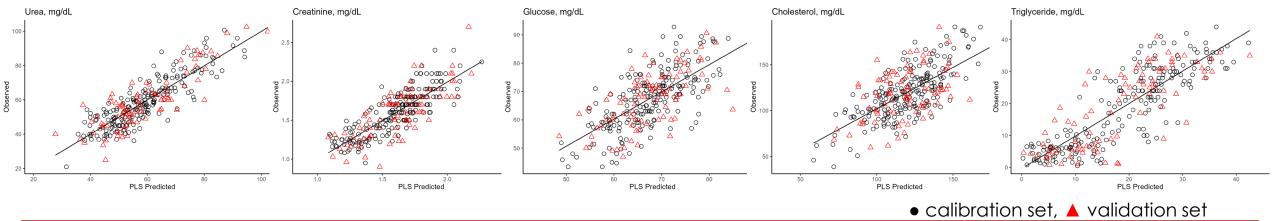
1.8

2.2

PLS Predicted

LV = Latent Variables

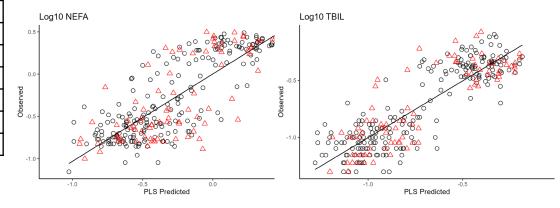


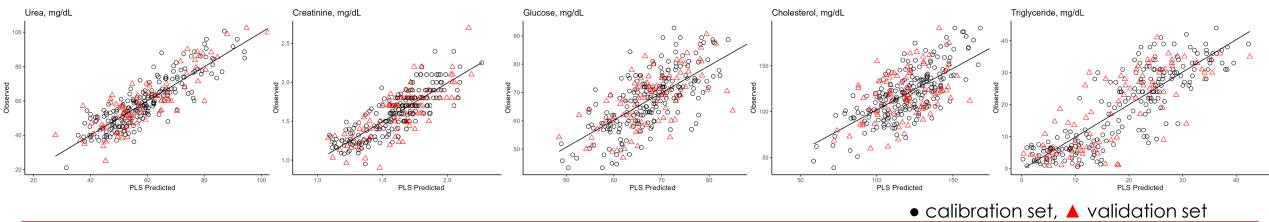


Blood trait

Trait	LV	Calibrat	ion (70%)	Validation (30%)	
		R ² C	SE _C	R^2_V	SE _V
Urea, mg/dL	13	0.76	7.11	0.72	8.31
Creatinine, mg/dL	14	0.71	0.16	0.51	0.22
Log ₁₀ NEFA	9	0.68	0.27	0.55	0.33
Log ₁₀ TBIL	11	0.76	-0.27	0.69	0.20
Glucose, mg/dL	14	0.44	7.63	0.29	8.67
Cholesterol, mg/dL	15	0.58	18.08	0.24	25.06
Triglyceride, mg/dL	9	0.73	6.39	0.60	7.71

LV = Latent Variables

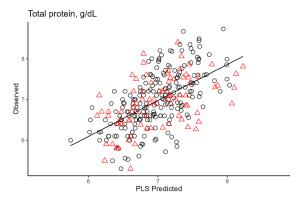


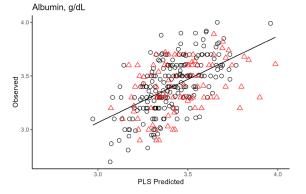


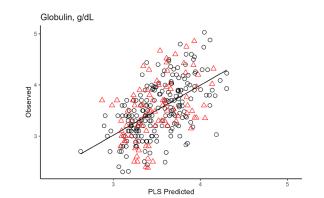
Blood trait

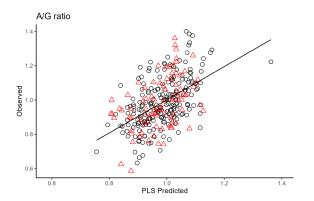
Trait	LV	Calibrat	ion (70%)	Validation (30%)	
	LV	R ² _C	SE _C	R^2_V	SE _v
Urea, mg/dL	13	0.76	7.11	0.72	8.31
Creatinine, mg/dL	14	0.71	0.16	0.51	0.22
Log ₁₀ NEFA	9	0.68	0.27	0.55	0.33
Log ₁₀ TBIL	11	0.76	-0.27	0.69	0.20
Glucose, mg/dL	14	0.44	7.63	0.29	8.67
Cholesterol, mg/dL	15	0.58	18.08	0.24	25.06
Triglyceride, mg/dL	9	0.73	6.39	0.60	7.71

LV = Latent Variables






Protein profile


Trait	LV	Calibration (70%)		Validation (30%)	
IIIII	LV	R ² _C	SE _C	R^2_V	SE _V
Total protein, g/dL	6	0.20	118.21	0.14	127.53
Albumin, g/dL	10	0.37	0.20	0.15	0.23
Globulin, g/dL	6	0.32	0.45	0.24	0.49
A/G ratio	7	0.32	0.45	0.24	0.49

LV = Latent Variables

calibration set, ▲ validation set

CONCLUSIONS

Predict something present in the blood using the milk spectrum is challenging -> INDIRECT PREDICTION

Phenotypes predicted from the milk spectra can be valuable for **genetic investigations** at the population level and **for design of breeding programs**

CONCLUSIONS

Predict something present in the blood using the milk spectrum is challenging -> INDIRECT PREDICTION

Phenotypes predicted from the milk spectra can be valuable for **genetic investigations** at the population level and **for design of breeding programs**

Concentration of several blood traits (urea, TIBL, NEFA, creatinine, and triglyceride) can be considered as good enough for:

- ✓ POPULATION SCREENING: monitoring metabolic health of buffaloes in dairy herd
- ✓ CARRYING OUT SELECTIVE BREEDING

CONCLUSIONS

Predict something present in the blood using the milk spectrum is challenging -> INDIRECT PREDICTION

Phenotypes predicted from the milk spectra can be valuable for **genetic investigations** at the population level and **for design of breeding programs**

Concentration of several blood traits (urea, TIBL, NEFA, creatinine, and triglyceride) can be considered as good enough for:

- ✓ POPULATION SCREENING: monitoring metabolic health of buffaloes in dairy herd
- ✓ CARRYING OUT SELECTIVE BREEDING

Further efforts should be made to understand if MIR spectra coupled with **machine learning algorithms** can result in an improvement of the models' accuracy.

Thank you for attending

Contents lists available at ScienceDirect

Methods

journal homepage: www.elsevier.com/locate/ymeth

Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions

C. Grelet ^a, P. Dardenne ^a, H. Soyeurt ^b, J.A. Fernandez ^a, A. Vanlierde ^a, F. Stevens ^a, N. Gengler ^b, F. Dehareng ^a, ^{*}

Table 4 Characteristics of the 7 K-mean clusters resulting from the classification of 57 milk MIR models following their mean-centered cross-validation RPD, relative RMSE and \mathbb{R}^2 .

Cluster	RPDcv	Relative RMSEcv	R ² cv	Interpretation for application
1	> 6	<5%	> 0.97	Any application
2	4.2-6	<10%	0.94-0.97	Quality control
3	3-4.2	<10%	0.89-0.94	Quantitative screening
4	2-3	<25%	0.74-0.89	Rough screening
5	1.5–2	<25%	0.55-0.74	Allows to compare groups, discriminate high or low values
6	1.5–2	>25%	0.55-0.74	Highly imprecise, can be used to detect extreme values
7	< 1.5	-	< 0.55	Not recommended

Near-infrared technology: getting the best out of light: a short course in the practical implementation of near-infrared spectroscopy for the user

P. Williams - 2004 - PDK Projects, Incorporated

- R² between 0.50 and 0.65 -> detection of extreme values or comparison of groups.
- R² between 0.66–0.81 -> approximate screening
- R² between 0.82-0.90 -> good quantitative screening
- $R^2 \ge 0.91$ -> punctual prediction

