

OPEN ACCESS Check for update

Assessing cortisol concentration in different matrices: predictive potential and relationship with production levels, lactation stage and parity in dairy buffaloes

Alessio Cotticelli^a (a), Giovanna Bifulco^a, Isabella Pividori^b, Roberta Matera^a (b), Maria Teresa Verde^c, Matteo Santinello^d , Alberto Prandi^b and Tanja Peric^b

^aDipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italia: ^bDipartimento di Scienze Agroalimentari Ambientali e Animali, Università degli studi di Udine, Udine, Italia; 'Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli Federico II, Napoli, Italia; ^dDipartimento di Agronomia Animali Alimenti Risorse naturali e Ambiente, University of Padova, Legnaro, Italy

Presenting author: Alessio Cotticelli

Cortisol concentrations in different matrices: predictive potential and relationship with productive level, lactation stage and parity in dairy buffaloes

A. Cotticelli¹, R. Matera¹, T. Peric², I. Pividori², A. Salzano¹, V. Longobardi¹, G. Campanile¹

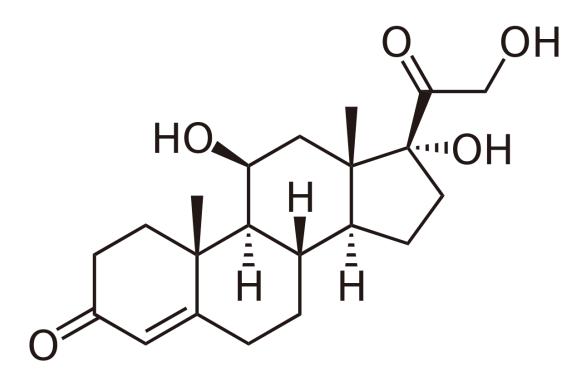
¹ University of Naples, Department of Veterinary Medicine and Animal Production, Via Delpino 1, 80137 Naples, Italy

² University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Sondrio 2, 33100 Udine, Italy

The 75th EAAP Annual Meeting 1 - 5 September 2024 Florence, Italy

Introduction

Stress is a condition resulting from the action of one or more stressors of either external or internal origin

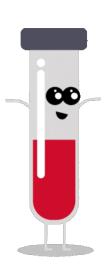

Several <u>physiological</u> and pathological <u>conditions</u> can be responsible for an <u>alteration of the homeostasis</u>

Parity and stage of lactation can influence metabolic profile, milk yield, somatic cell count, and acid base balance of dairy buffaloes

Similarly, milk yield may represent a physiological burden and may be associated with the hypothalamic-pituitary—adrenal (HPA) axis activation

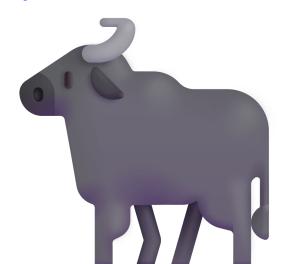
Complex adaptation processes take place to enable the maintenance of the homeostasis to meet the requirements for the metabolically prioritized mammary gland in early lactation

Why the cortisol?


The glucocorticoid hormone cortisol, due to its multifaceted role in the physiological stress response, is the primary physiological biomarker for many phenotypic and metabolic changes in animals associated with activation of the HPA axis

Biological matrices

- <u>Plasma</u> cortisol concentrations evaluate <u>acute</u> responses to stressful stimuli. However, the process of blood sampling is accompanied by <u>additional burden</u>
- Therefore, milk is an alternative to blood for dairy ruminants. Both these biological fluids provide short-term evaluation about the HPA axis activity (in milk with a lag-time)
- On the other hand, <u>hair</u> reflects <u>long-term retrospective concentrations</u> of cortisol, it is non-invasive and has a long lag time



Rationale and aim

In dairy ruminants, <u>conflicting results</u> have been reported about the influence of parity and lactation stage on cortisol concentrations. Cortisol has been previously investigated in buffalo milk¹, whereas the impact of parity and lactation stage on its concentrations was studied on plasma in dairy buffaloes²

However, <u>no information</u> is available by using <u>different matrices</u> from the same animals

The aim of this study was to evaluate the <u>influence</u> of <u>parity</u>, <u>stage of lactation</u> and <u>productive</u> <u>levels</u> on cortisol concentrations in biological matrices sampled in Italian Mediterranean buffaloes and to study which one could show a promising <u>predictive potential</u>

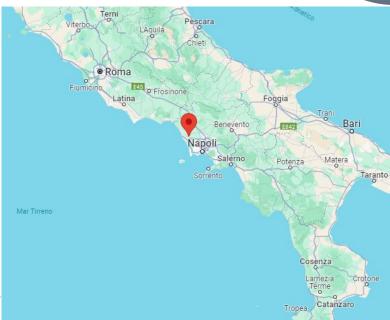
¹ Cotticelli A, Verde MT, Matera R, Pividori I, Prandi A, Neglia G, Peric T. 2022. Validation of a radioimmunoassay method for cortisol in buffalo milk whey. A preparatory step for future sensor technology. Ital J Anim Sci. 21(1):1622–1631. doi: 10.1080/1828051X.2022.2147868

² Saqib MN, Qureshi MS, Suhail SM, Khan RU, Bozzo G, Ceci E, Laudadio V, Tufarelli V. 2022. Association among metabolic status, oxidative stress, milk yield, body condition score and reproductive cyclicity in dairy buffaloes. Reprod Domest Anim. 57(5):498–504. doi: 10.1111/rda.14086.

Materials and methods

68 Italian Mediterranean dairy buffaloes (*Bubalus bubalis*): Multiparous (n = 30) and primiparous (n = 38)

Milk quality traits:

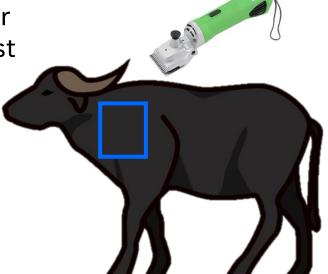

Daily milk yield (kg), fat, protein, lactose content of milk (daily percentage), somatic cells count (SCC), mature equivalent milk yield (EMY), mature equivalent fat content (EFC) and mature equivalent protein content (EPC) (kg/lactation)

Somatic cell score (SCS), energy corrected milk (ECM) and equivalent energy corrected milk (eECM) were calculated as follows:

$$SCS = \log_2\left(\frac{SCC}{100}\right) + 3$$

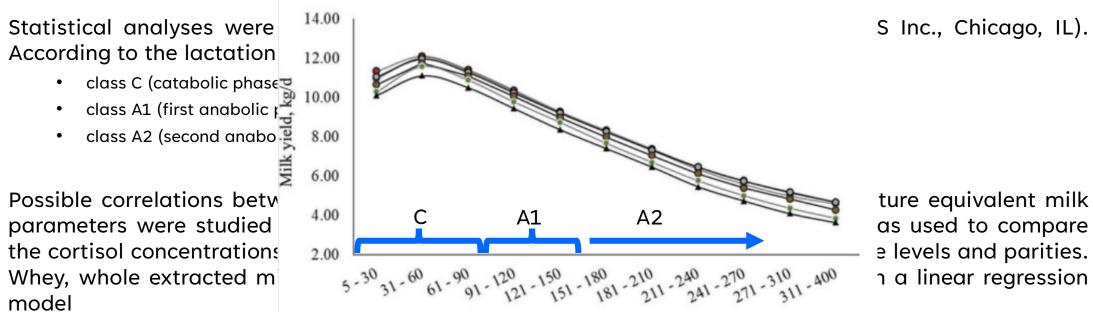
$$ECM = \text{milk yield } \times \left\{ \left[\text{fat } \left(\frac{g}{\text{kg}}\right) - 40 + \text{protein } \left(\frac{g}{\text{kg}}\right) - 31 \right] \times 0.01155 \right\} + 1$$

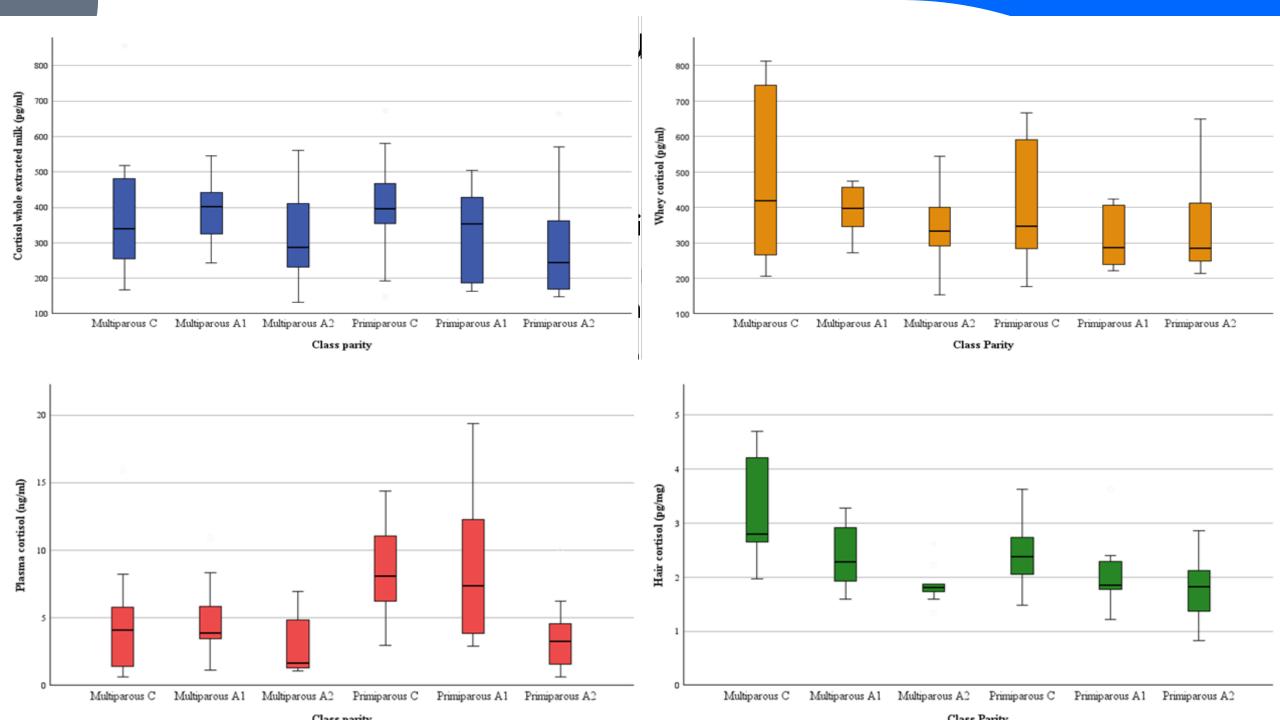
$$eECM = dEMY \times \left\{ \left[EFC \left(\frac{g}{\text{kg}} \right) - 40 + EPC \left(\frac{g}{\text{kg}} \right) - 31 \right] \times 0.01155 \right\} + 1$$

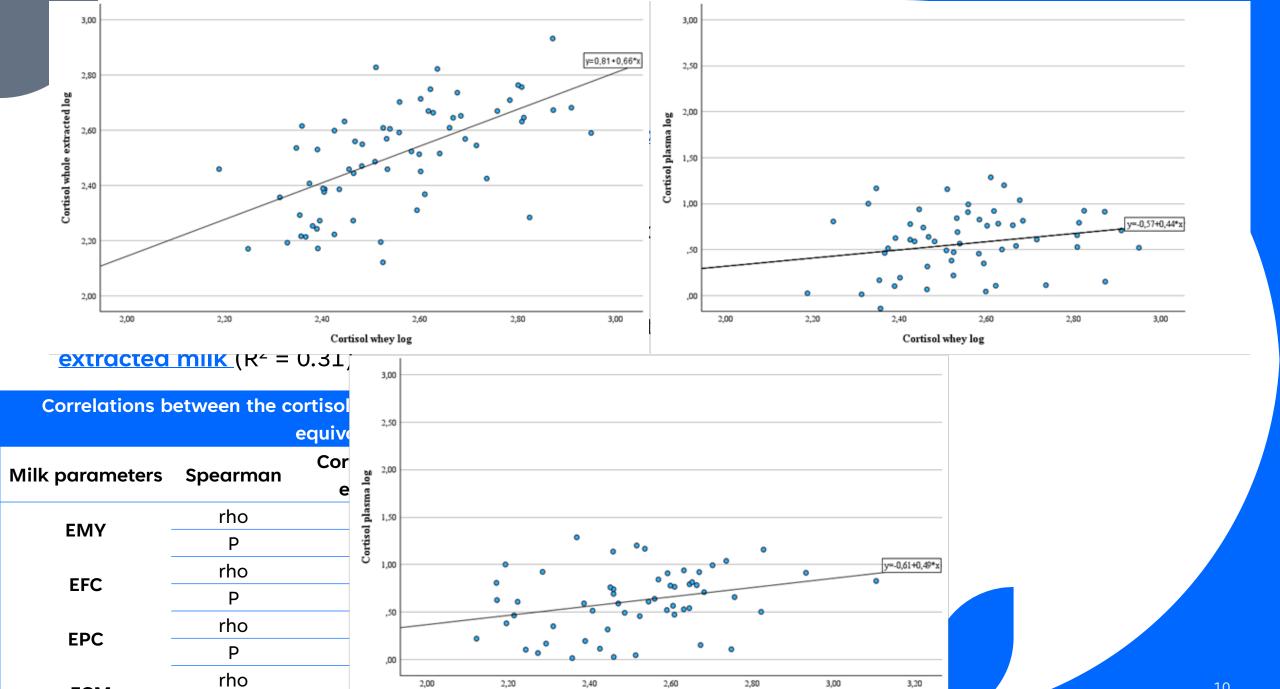


Biological samples collection

75 th 8 th 8 th 8 th 13


- 1. Sterile falcon tubes (Falcon®) were used to collect individual milk samples from the at-line sampler (MM15 DeLaval)
- 2. <u>Blood</u> (10 mL) was collected from the mammary vein into vacutainer tubes (lithium heparin anticoagulant). Samples were centrifuged at 1500 × g for 15 min and the plasma was aliquoted into Eppendorf tubes (1mL) and stored at -20 °C
- 3. For analyses only regrown <a href="https://hor.nlm.nih.gov/




Analysis

The cortisol concentrations were measured in whole extracted milk, whey, hair and plasma using an in-house radioimmunoassay (RIA) method¹. The sensitivity of the assay was 16.8 pg/mL

¹ Peric T, Comin A, Montillo M, Spigarelli C, Corazzin M, Cotticelli A, Prandi A. 2022. Postnatal and postweaning endocrine setting in dairy calves through hair cortisol, dehydroepiandrosterone and dehydroepiandrosterone sulphate. Agric Nat Resource. 56(5):867–876

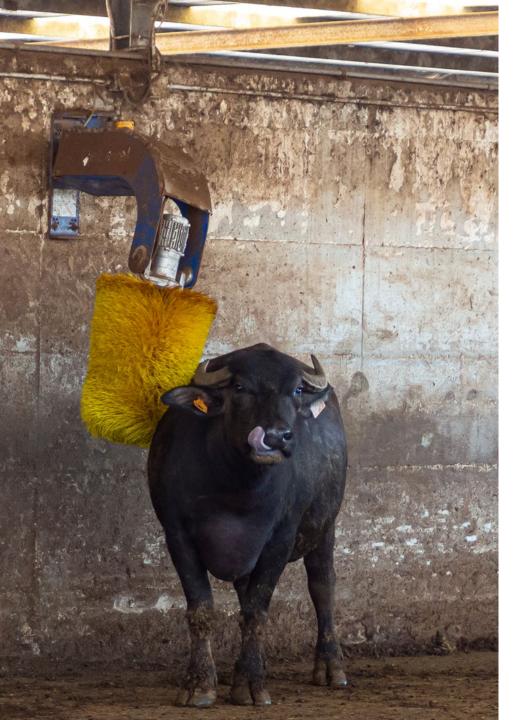


Cortisol whole extracted log

eECM

P

Discussion


Since the dynamics of physiological processes associated with <u>parity</u> are different and they last long timeline, it is likely that they end up being eluted over the time and the biological matrices can't highlight differences between the two primiparous and multiparous buffaloes

As expected, our results showed an <u>increase</u> of <u>cortisol</u> concentration in animals in the <u>first stages</u> of <u>lactation</u>. After calving buffaloes undergo several physiological changes (negative energy balance, uterine involution and ovarian cyclic activity resumption), these conditions represent <u>stressful</u> events for the animals that respond to increasing cortisol concentrations

The <u>negative correlations</u> between the hair cortisol, EMY, EPC and eECM and between whey cortisol and EFC seem to <u>reveal a detrimental effect</u> of the <u>cortisol</u> on both <u>quality</u> and <u>quantity</u> parameters of buffalo <u>milk</u>

Whey and whole extracted milk can be further investigated as potential predictors of the concentrations of cortisol. Predicting the plasma cortisol concentrations by milk could help sparing the animals the blood sampling, that is always invasive and stressful

Conclusions

The lactation stage showed a <u>comparable influence</u> on cortisol concentrations across the four media

Further studies are needed to get conclusions about the effects of <u>parity</u> that seemed to <u>overrun</u> the period retrospectively covered by the <u>biological matrices</u>

The influence of cortisol on <u>productive level</u> was pictured by the <u>hair</u> being a retrospective matrix that include a broader timeframe compared to punctual matrices

Milk seemed to have predictive potential to estimate cortisol concentrations in buffalo and may be used as parameter for stress determination avoiding blood sampling

It is concluded that the development of a real-time automated cortisol measurement in milk could be a profitable tool in Italian Mediterranean Buffalo farming

Thanks for the attention

