Session 33.

Mediterranean buffalo farming for sustainable milk and meat production

Room: Reggiana – Palazzo Affari 2nd Floor

Chair: Neglia / Niero

Assessment of infrared spectroscopy for the quantification of protein fractions in buffalo milk

Elena Visentin¹, <u>Giovanni Niero</u>¹, Alberto Guerra¹, Roberta Matera², Valentina Longobardi², Gianluca Neglia², Massimo De Marchi¹

¹Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Italy;

²Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy

- → Introduction
- → Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

In Italy

Campania and Lazio regions

90% of Italian buffalos

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

In Italy

✓ Campania and Lazio regions

90% of Italian buffalos

✓ Buffalo milk is mainly processed into Mozzarella di Bufala Campana PDO

Very soft and tasty
Rich in milk and flavours
Exported all over the world

- \rightarrow Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Important factors affecting buffalo milk processability for cheesemaking process

- ✓ Milk acidity
- → pH levels and titratable acidity
 - √ High calcium content
- → improve curd firmness and texture of final product
 - √ Somatic cell
 - ✓ High fat and protein content
 - → contribute to cheese yield, structure and flavor

- → Introduction
- → Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Buffalo milk protein fractions

REFERENCE METHOD

PREDICTIVE METHOD

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Buffalo milk protein fractions

REFERENCE METHOD

Reverse-phase HPLC (RPHPLC)

- ✓ High precision and sensitivity
 - ✓ Expensive equipment
 - ✓ Specialized personnel
 - ✓ Time-consuming

PREDICTIVE METHOD

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Buffalo milk protein fractions

REFERENCE METHOD

Reverse-phase HPLC (RPHPLC)

- ✓ High precision and sensitivity
 - ✓ Expensive equipment
 - ✓ Specialized personnel
 - ✓ Time-consuming

PREDICTIVE METHOD

Mid-infrared spectroscopy (MIRS)

- ✓ Non-destructive technique
- ✓ Non-specialized personnel
 - ✓ Cost-effective
 - ✓ Rapid analysis

- ightarrow Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Few data available for buffalo milk protein composition.

Interest to have a deeper and quiker analytical methods for:

- Investigating **variation** of buffalo milk protein fractions

- Modifying milk protein composition
- Altering frequency of specific protein genetic variants

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

With the present study we would like to:

1. Determine protein fractions in buffalo milk

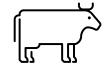
Outline

- \rightarrow Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

With the present study we would like to:

1. Determine protein fractions in buffalo milk

2. Assess the effectiveness of mid-infrared spectroscopy to predict milk protein composition


- → Introduction
- \rightarrow Aim
- Materials & Methods
- → Results & Discussion
- Conclusions

Sample collection

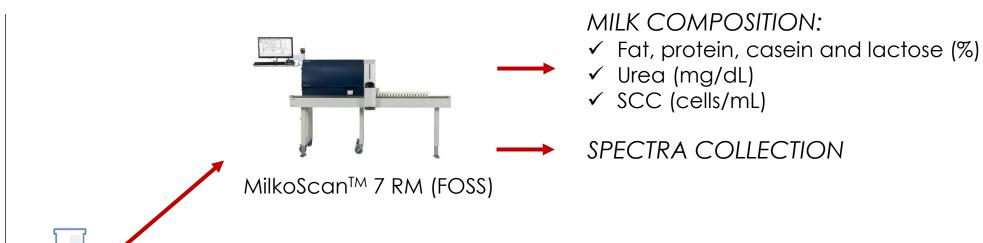
401 Italian Mediterranean buffaloes ארם אונים אונים ווישנים של אונים ווישנים ווישנים אונים אונים ווישנים אונים אונים ווישנים אונים אונים ווישנים אונים אונים

7 commercial herds

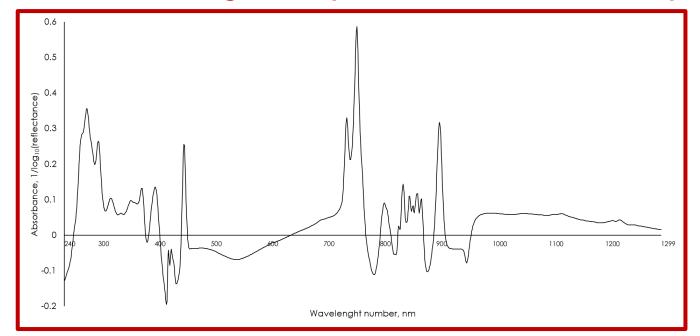
Each buffalo was sampled once

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

MILK COMPOSITION:

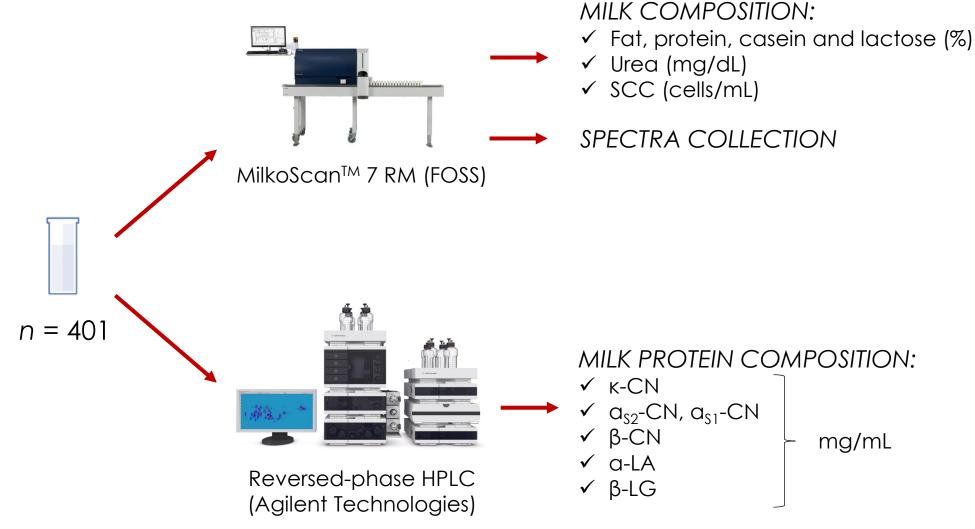

- ✓ Fat, protein, casein and lactose (%)
- ✓ Urea (mg/dL)
- √ SCC (cells/mL)

SPECTRA COLLECTION



- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Mid-infrared average raw spectra of buffalo milk samples

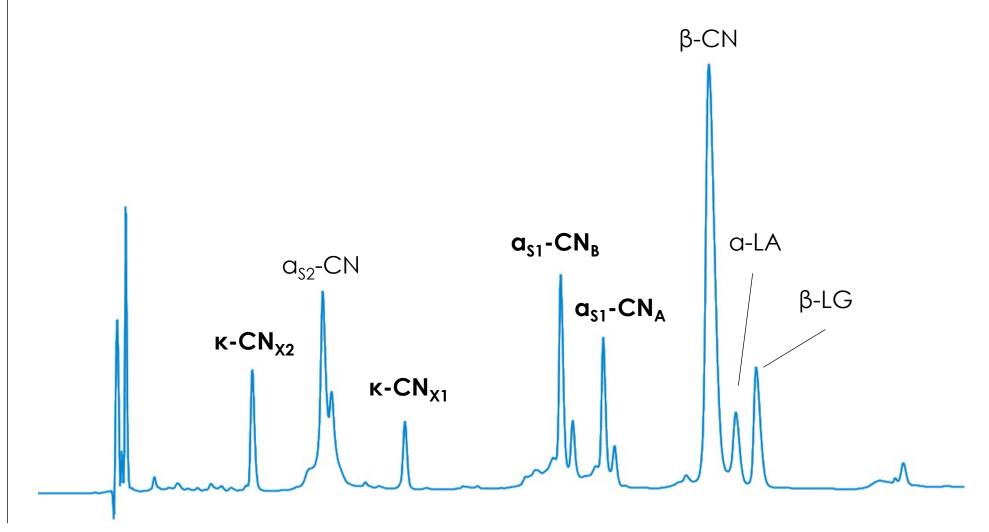


n = 401

Outline

- Introduction
- \rightarrow Aim
- **Materials & Methods**
- Results & Discussion
- Conclusions

Bonfatti et al., 2013



Separation and quantification of water buffalo milk protein fractions and

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Chromatograms of individual sample of buffalo milk with different κ - and α_{s1} -CN genetic variants

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Chemometric analysis

Prediction models were built through PLS regression analysis.

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Chemometric analysis

Prediction models were built through PLS regression analysis.

The prediction equations obtained were validated using a 5-fold cross-validation using 3 rounds of outliers elimination.

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Chemometric analysis

Prediction models were built through PLS regression analysis.

The prediction equations obtained were validated using a **5-fold cross-validation** using 3 rounds of outliers elimination.

- → The best model of each trait was chosen based on:
 - ✓ **LF** selected to minimize the RMSE of cross validation;
 - \checkmark R^2 in cross validation;
 - ✓ RPD in cross validation.

WinISI 4 software [S]

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Descriptive statistics of milk quality traits

	Milk quality traits ²	Ν	Mean	SD	CV, %	Minimum	Maximum
	Fat, %	380	7.26	1.79	24.63	2.10	13.70
—	Protein, %	383	4.56	0.40	8.69	3.24	5.84
	Casein, %	383	3.71	0.38	10.36	2.57	4.91
	Lactose, %	377	4.66	0.25	5.34	3.75	5.29
	Urea, mg/dL	381	47.40	16.12	34.01	3.87	99.22
	SCS, units	382	3.28	1.68	51.41	-0.64	8.26

¹SD: standard deviation; CV: coefficient of variation.

 $^{^2}$ SCS: somatic cell score, calculated as SCS = 3 + log_2 (SCC/100,000), where SCC is somatic cell count.

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

<u>Descriptive statistics</u>¹ of milk protein fractions

	Milk protein fractions ² , mg/mL	Ν	Mean	SD	CV, %	Minimum	Maximum
	Total protein	387	55.54	11.36	20.46	31.86	89.15
	Total CN	388	47.29	10.20	21.57	27.23	83.63
	κ-CN	387	7.56	2.28	30.19	2.40	15.64
	a _{s2} -CN	388	7.41	1.58	21.33	3.01	13.68
	→ a _{s1} -CN	388	18.78	4.38	23.34	8.96	35.35
_	→ β-CN	388	13.50	3.12	23.15	6.83	24.73
	Total WP	388	8.35	1.91	22.90	3.49	14.79
	a-LA	386	2.17	0.50	23.20	0.87	3.61
	β-LG	387	6.15	1.50	24.36	2.35	10.79

¹SD: standard deviation; CV: coefficient of variation.

²CN: casein; WP: whey protein.

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

<u>Descriptive statistics</u>¹ of milk protein fractions

Milk protein fractions ² , mg/mL	Ν	Mean	SD	CV, %	Minimum	Maximum
Total protein	387	55.54	11.36	20.46	31.86	89.15
Total CN	388	47.29	10.20	21.57	27.23	83.63
κ-CN	387	7.56	2.28	30.19	2.40	15.64
a _{S2} -CN	388	7.41	1.58	21.33	3.01	13.68
as1-CN	388	18.78	4.38	23.34	8.96	35.35
β-CN	388	13.50	3.12	23.15	6.83	24.73
Total WP	388	8.35	1.91	22.90	3.49	14.79
→ a-LA	386	2.17	0.50	23.20	0.87	3.61
→ β-LG	387	6.15	1.50	24.36	2.35	10.79

¹SD: standard deviation; CV: coefficient of variation.

²CN: casein; WP: whey protein.

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

<u>Descriptive statistics</u>¹ of milk protein fractions

Ν	Mean	SD	CV, %	Minimum	Maximum
387	55.54	11.36	20.46	31.86	89.15
388	47.29	10.20	21.57	27.23	83.63
387	7.56	2.28	30.19	2.40	15.64
388	7.41	1.58	21.33	3.01	13.68
388	18.78	4.38	23.34	8.96	35.35
388	13.50	3.12	23.15	6.83	24.73
388	8.35	1.91	22.90	3.49	14.79
386	2.17	0.50	23.20	0.87	3.61
387	6.15	1.50	24.36	2.35	10.79
	387 388 387 388 388 388 388 386 387	387 55.54 388 47.29 387 7.56 388 7.41 388 18.78 388 13.50 388 8.35 386 2.17 387 6.15	387 55.54 11.36 388 47.29 10.20 387 7.56 2.28 388 7.41 1.58 388 18.78 4.38 388 13.50 3.12 388 8.35 1.91 386 2.17 0.50 387 6.15 1.50	387 55.54 11.36 20.46 388 47.29 10.20 21.57 387 7.56 2.28 30.19 388 7.41 1.58 21.33 388 18.78 4.38 23.34 388 13.50 3.12 23.15 388 8.35 1.91 22.90 386 2.17 0.50 23.20 387 6.15 1.50 24.36	387 55.54 11.36 20.46 31.86 388 47.29 10.20 21.57 27.23 387 7.56 2.28 30.19 2.40 388 7.41 1.58 21.33 3.01 388 18.78 4.38 23.34 8.96 388 13.50 3.12 23.15 6.83 388 8.35 1.91 22.90 3.49 386 2.17 0.50 23.20 0.87 387 6.15 1.50 24.36 2.35

¹SD: standard deviation; CV: coefficient of variation.

²CN: casein; WP: whey protein.

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Fitting statistics¹ of prediction model

Milk protein fractions ² , mg/mL	Ν	% outliers	SE_{CV}	R^2_{CV}	LF
→ Total protein	351	8.83	7.98	0.51	13
→ Total CN	351	8.83	6.99	0.53	12
κ-CN	361	6.23	1.65	0.44	11
a _{S2} -CN	358	7.01	2.77	0.45	12
a _{S1} -CN	365	5.20	2.07	0.56	11
β-CN	352	8.57	1.81	0.60	12
Total WP	350	9.10	1.37	0.38	14
a-LA	354	8.05	0.37	0.44	13
β-LG	354	8.05	1.16	0.34	14

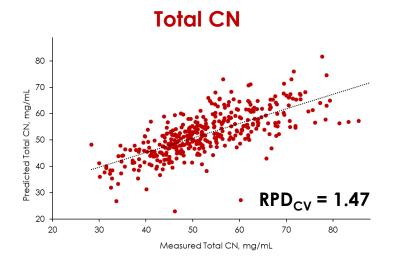
¹N: number of samples; SE_{CV}: standard error of prediction of cross-validation; R²_{CV}: coefficient of determination of cross-validation; LF: latent factors.

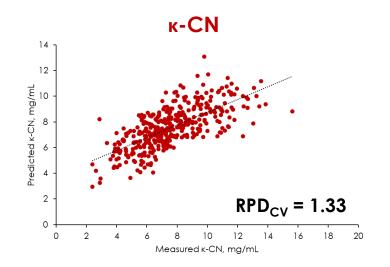
²CN: casein; WP: whey protein.

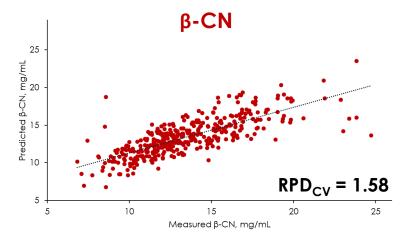
- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Fitting statistics¹ of prediction model

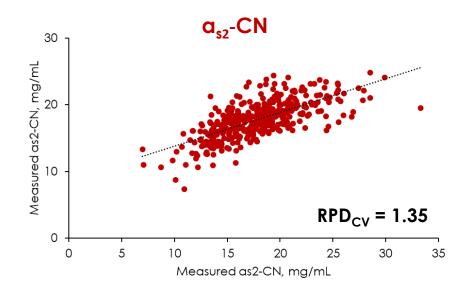
Milk protein fractions ² , mg/mL	Ν	% outliers	SE_CV	R^2_{CV}	LF
Total protein	351	8.83	7.98	0.51	13
Total CN	351	8.83	6.99	0.53	12
κ-CN	361	6.23	1.65	0.44	11
a _{S2} -CN	358	7.01	2.77	0.45	12
→ a _{S1} -CN	365	5.20	2.07	0.56	11
→ β-CN	352	8.57	1.81	0.60	12
Total WP	350	9.10	1.37	0.38	14
a-LA	354	8.05	0.37	0.44	13
β-LG	354	8.05	1.16	0.34	14

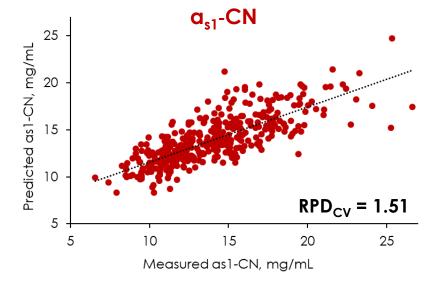

¹N: number of samples; SE_{CV}: standard error of prediction of cross-validation; R²_{CV}: coefficient of determination of cross-validation; LF: latent factors.


²CN: casein; WP: whey protein.


- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Measured through RP-HPLC vs predicted through MIRS





- → Introduction
- → Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

Measured through RP-HPLC vs predicted through MIRS

- → Introduction
- \rightarrow Aim
- → Materials & Methods
- → Results & Discussion
- → Conclusions

- \checkmark Better results were obtained for total protein, total CN, a_{s2} -CN and β -CN.
- ✓ Further research should be addressed to improve the accuracy of midinfrared spectroscopy models by increasing the number of samples in calibration and considering alternative chemometric approaches.
- ✓ These results can be used to genetically enhance milk technological traits in Mozzarella di Bufala Campana PDO area.

Thank you for your attention!

Dr. Giovanni Niero University of Padova – DAFNAE g.niero@unipd.it

