

Effect of fresh hemp and savory leaves on feed intake and rumen fermentation: in vitro and in vivo trials

Selene Massaro*, Nicolò Amalfitano, Diana Giannuzzi, Franco Tagliapietra

Department of Agronomy, Food, Natural resources, Animal and Environment (DAFNAE), University of Padova, Legnaro, Italy *Corresponding author: selene.massaro@phd.unipd.it

The pharmaceutical and herbal sectors produce large amounts of by-products, potentially are usable in

dairy cows' nourishment

Few studies have been conducted on by-products

But are we sure that certain plants or herbs have an effect on the rumen fermentation or on methane emissions as whole products?

Investigated substrates

Cannabis sativa L. → Hemp leaves (HL)

Variety: Futura 75

Cultivation: Research center, Italy

Harvesting time: July-August 2022

Harvest part: top leaves &

pre-blooming flower

Stocking temperature: - 20°C

Cultivation: Paodva, Italy

Harvesting time: August-September 2022

Harvest part: top leaves

Stocking temperature: - 20°C



Investigated substrates

Variety: Futura 75

Cultivation: Research center, Italy

Harvesting time: July-August 2022

Harvest part: top leaves &

pre-blooming flower

Stocking temperature: - 20°C

Cultivation: Padova, Italy

Harvesting time: August-September 2022

Harvest part: **top leaves**

Stocking temperature: - 20°C

Experiment 1. *In vitro* study

evaluation of **HL** and **SL** <u>in vitro</u> on ruminal parameters, using Lolium multiflorum L. as control test (CTRL) Experiment 2.

In vivo

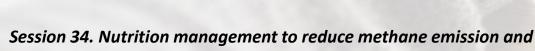
Evaluation <u>in vivo</u> of **HL** and **SL**in a TMR on the rumen fluid
modification with a Latin
Square design 3×3

Experiment 3.

In vitro after in vivo trial

Evaluation <u>in vitro</u> of ruminal parameters, using the **rumen fluid** collected <u>in vivo</u>
(Experiment 2)

Experiment 1. *In vitro* study


Evaluation of **HL** and **SL** in vitro on ruminal parameters, using Lolium multiflorum L. as control test (CTRL)

Experiment 2. In vivo

Evaluation <u>in vivo</u> of **HL** and **SL** in a TMR on the rumen fluid modification with a Latin Square Design 3×3

Experiment 3. In vitro after in vivo trial

Evaluation in vitro of ruminal parameters, using the rumen fluid collected in vivo (Experiment 2)

Introduction

Experiment 1. *In vitro* study

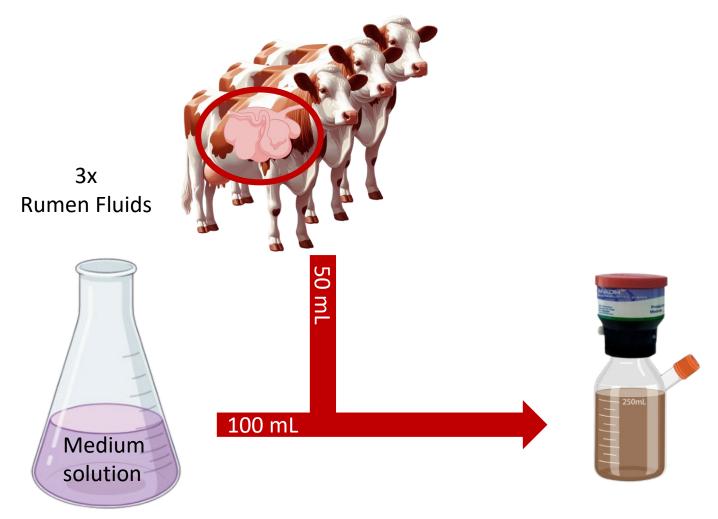
evaluation of **HL** and **SL** <u>in vitro</u> on ruminal parameters, using Lolium multiflorum L. as control test (CTRL)

Experiment 2. In vivo

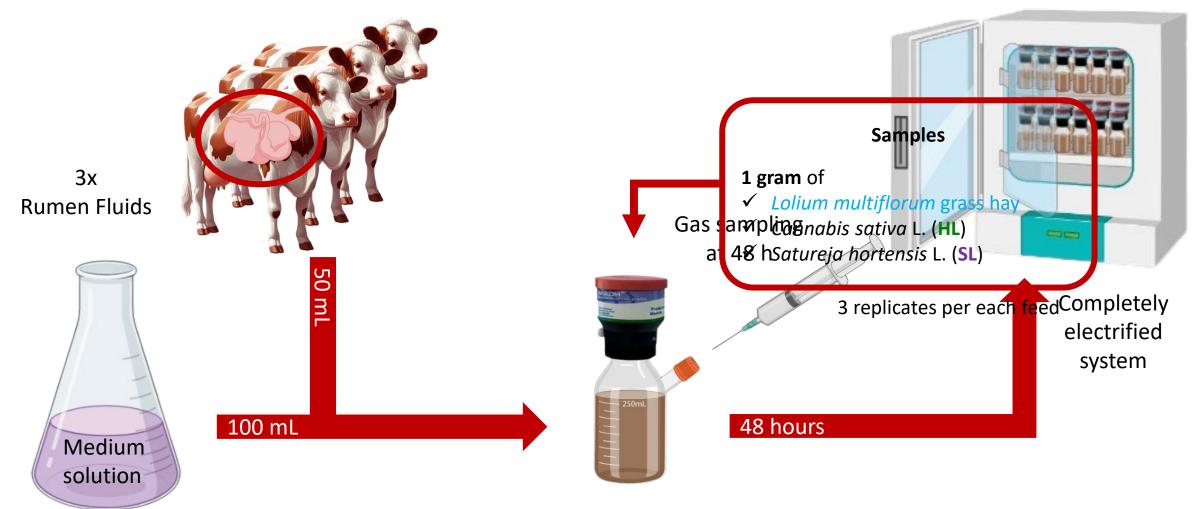
in a TMR on the rumen fluid modification with a Latin Square Design 3×3

Experiment 3. In vitro after in vivo trial

Evaluation <u>in vitro</u> of ruminal parameters, using the **rumen fluid** collected <u>in vivo</u>
(Experiment 2)

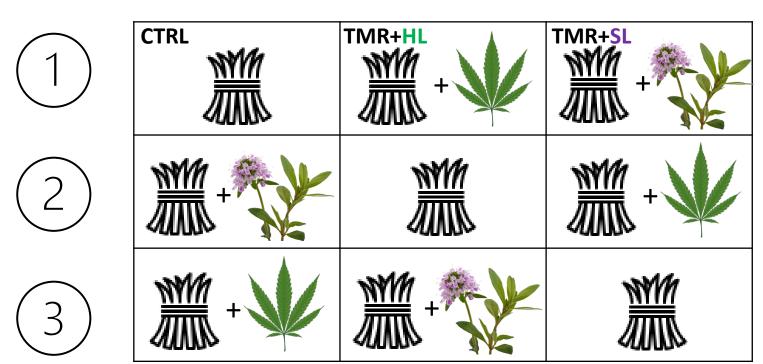

Materials and Methods

Experiment 1 – Feed test *in vitro*


Menke and Steingass, 1988

Experiment 1 – Feed test *in vitro*

Menke and Steingass, 1988


Experiment 2 - Feed test *in vivo*

- ✓ 3 groups of 2 animals
- ✓ 3 periods of 14 days
- ✓ 3 rumen fluid collections

Each animal was fed with all the 3 treatments in the 3 periods.

Experiment 2 - Feed test *in vivo*

- ✓ 3 groups of 2 animals
- ✓ 3 periods of 14 days
- √ 3 rumen fluid collections

HL + 0.5 kg/d HL + 1.0 kg/d HL + 1.5 kg/d SL + 0.2 kg/d SL + 0.4 kg/d SL + 1.0 kg/d

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Transition period

Treatment administration

Transition period

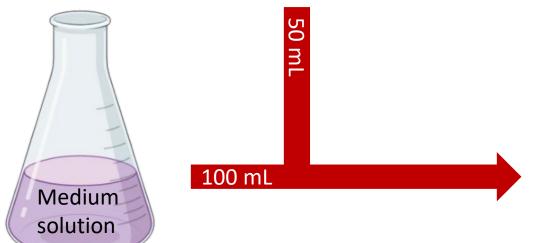
For each period:

1 group animal fed with TMR (CTRL)

1 group animal fed with TMR + HL

1 group animal fed with TMR + SL

Increasing doses

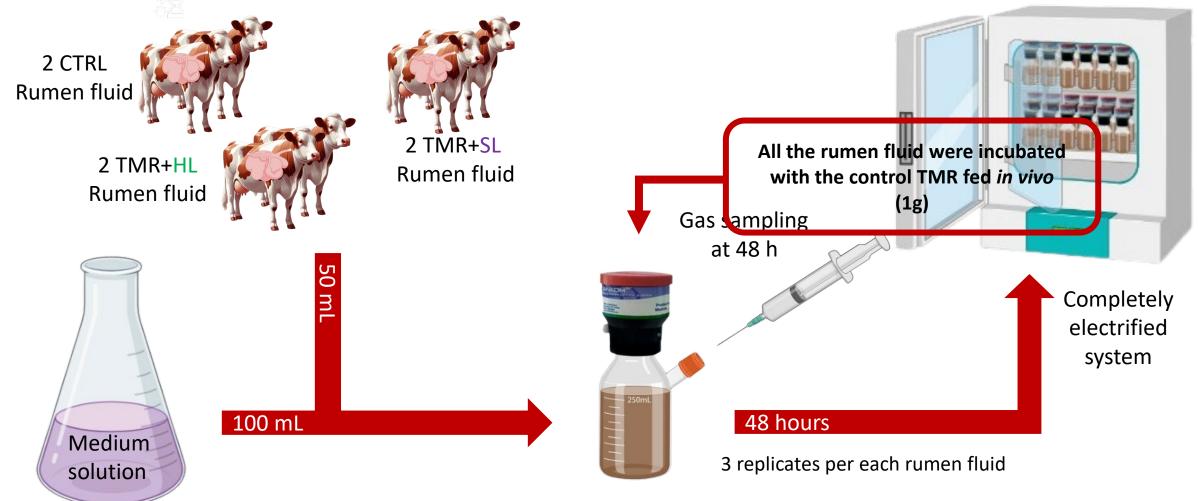


Experiment 3 - Rumen fluid activity in vitro

The rumen fluids, adapted or non-adapted, were collected from the animals raised for the *in vivo* experiment (Experiment 2).

3 replicates per each rumen fluid

Menke and Steingass, 1988

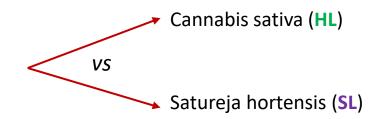


Experiment 3 - Rumen fluid activity in vitro

Menke and Steingass, 1988

Statistical model - Experiment 1

$$y_{ijklm} = \mu + Treatment_i + Cow_j + Position_k(Incubator_l) + e_{ijklm}$$


- Fixed effects
 - ➤ Treatment_i= 3 treatments (Lolium multiflorum, Cannabis sativa, Satureja hortensis)

- Random effects
 - \triangleright Cow_i = 3 dairy cows
 - $ightharpoonup Position_k(Incubator_l) = 2 position per 2 incubators$
 - position effect nested in the incubator

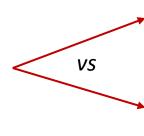
Treatments orthogonal contrasts

Lolium multiflorum, control test

Statistical model - Experiment 2 and 3

 $y_{ijklmn} = \mu + Animal\ group_i + Period_j + Diet\ in\ vivo_k + Cow_l(Animal\ group_m) + e_{ijklmn}$

- Fixed effects
 - \triangleright Animal group_i = 3 groups of animals
 - \triangleright *Period*_i= 3 periods
 - \triangleright Diet in $vivo_k$ = 3 diets administrated to the groups


- Random effects
 - $ightharpoonup Cow_l(Animal\ group_m) = 2 \text{ cows per 3 groups}$
 - cow effect nested in the animal group

Treatments orthogonal contrasts

Non-adapted rumen fluid

Animal fed with TMR (total mixed ratio, CTRL)

Adapted rumen fluid
Animal fed with TMR+HL

Adapted rumen fluid

Animal fed with TMR+SL

Results

Chemical composition of feeds (% of DM)

Feeds	DM, %	СР	EE	NDF	ADF	ADL	Ash	AIA
Lolium multiflorum L. ¹	89.9	8.08	1.67	59.0	33.1	4.41	7.07	0.52
Cannabis sativa L. (HL)	92.0	19.6	7.12	30.5	15.8	5.29	13.9	0.09
Satureja hortensis L. (SL)	89.6	8.43	5.41	60.5	45.6	17.8	7.2	0.29

DM: Dry Matter.

CP: Crude Protein.

EE: Ether Extract.

NDF: Neutral Detergent Fiber.

ADF: Acid Detergent Fiber.

ADL: Acid Detergent Lignin.

AIA: Acid Insoluble Ash

¹Lolium multiflorum L. was used in the *in vitro* test as a control for Experiment 1

M&M

Chemical composition of treatments (% of DM)

Feeds	DM, %	СР	EE	NDF	ADF	ADL	Ash	AIA
Lolium multiflorum L. ¹	89.9	8.08	1.67	59.0	33.1	4.41	7.07	0.52
Cannabis sativa L. (HL)	92.0	19.6	7.12	30.5	15.8	5.29	13.9	0.09
Satureja hortensis L. (SL)	89.6	8.43	5.41	60.5	45.6	17.8	7.2	0.29

DM: Dry Matter.

CP: Crude Protein.

EE: Ether Extract.

NDF: Neutral Detergent Fiber.

ADF: Acid Detergent Fiber.

ADL: Acid Detergent Lignin.

AIA: Acid Insoluble Ash

¹Lolium multiflorum L. was used in the *in vitro* test as a control for Experiment 1

Chemical composition of treatments (% of DM)

Feeds	DM, %	СР	EE	NDF	ADF	ADL	Ash	AIA
Lolium multiflorum L. ¹	89.9	8.08	1.67	59.0	33.1	4.41	7.07	0.52
Cannabis sativa L. (HL)	92.0	19.6	7.12	30.5	15.8	5.29	13.9	0.09
Satureja hortensis L. (SL)	89.6	8.43	5.41	60.5	45.6	17.8	7.2	0.29

DM: Dry Matter.

CP: Crude Protein.

EE: Ether Extract.

NDF: Neutral Detergent Fiber.

ADF: Acid Detergent Fiber.

ADL: Acid Detergent Lignin.

AIA: Acid Insoluble Ash

¹Lolium multiflorum L. was used in the *in vitro* test as a control for Experiment 1

Chemical composition of treatments (% of DM)

Feeds	DM, %	СР	EE	NDF	ADF	ADL	Ash	AIA
Lolium multiflorum L. ¹	89.9	8.08	1.67	59.0	33.1	4.41	7.07	0.52
Cannabis sativa L. (HL)	92.0	19.6	7.12	30.5	15.8	5.29	13.9	0.09
Satureja hortensis L. (SL)	89.6	8.43	5.41	60.5	45.6	17.8	7.2	0.29

DM: Dry Matter.

CP: Crude Protein.

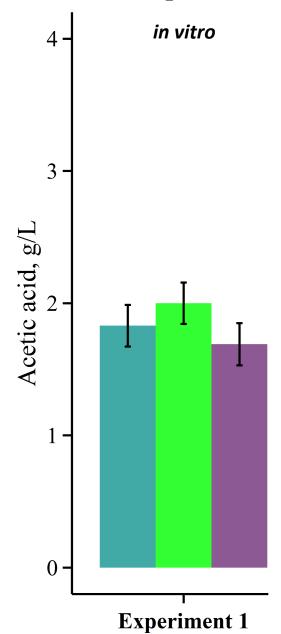
EE: Ether Extract.

NDF: Neutral Detergent Fiber.

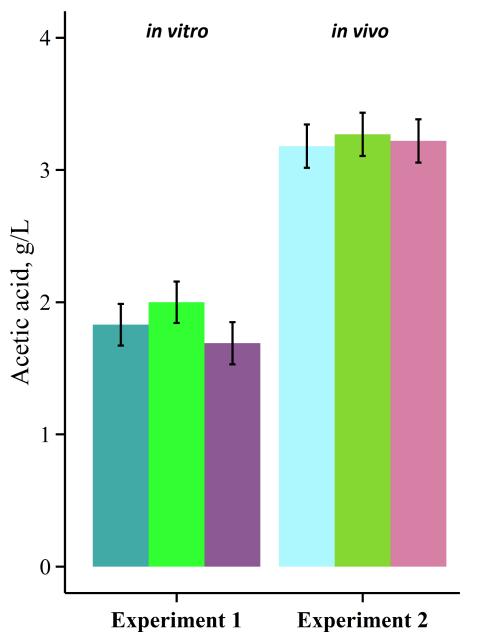
ADF: Acid Detergent Fiber.

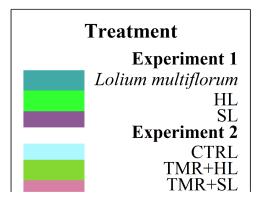
ADL: Acid Detergent Lignin.

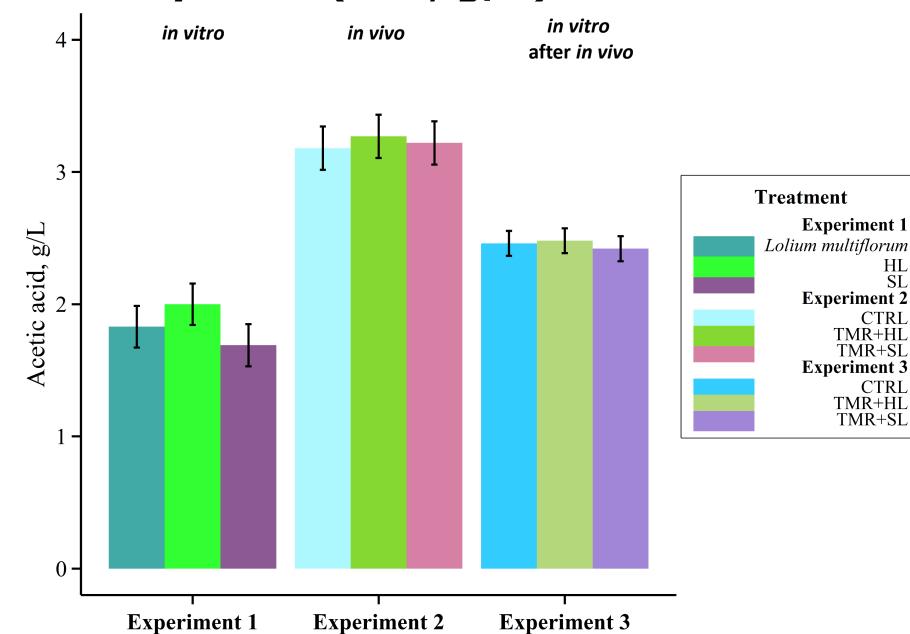
AIA: Acid Insoluble Ash


¹Lolium multiflorum L. was used in the *in vitro* test as a control for Experiment 1

Ruminal parameters



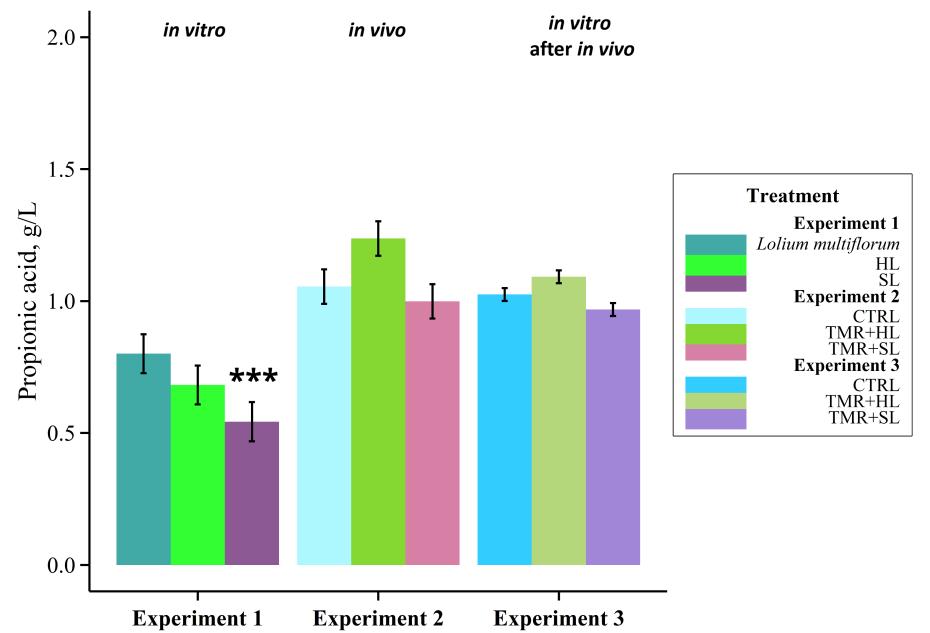


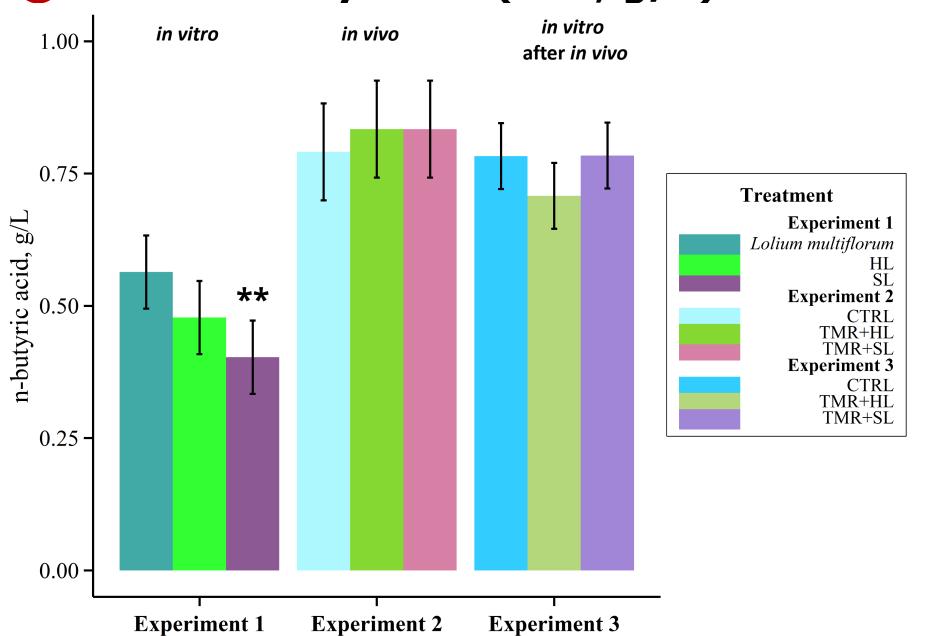


Experiment 1 Experiment 3

The values referes to the end of the in vitro fermentation (48 h)

Experiment 2

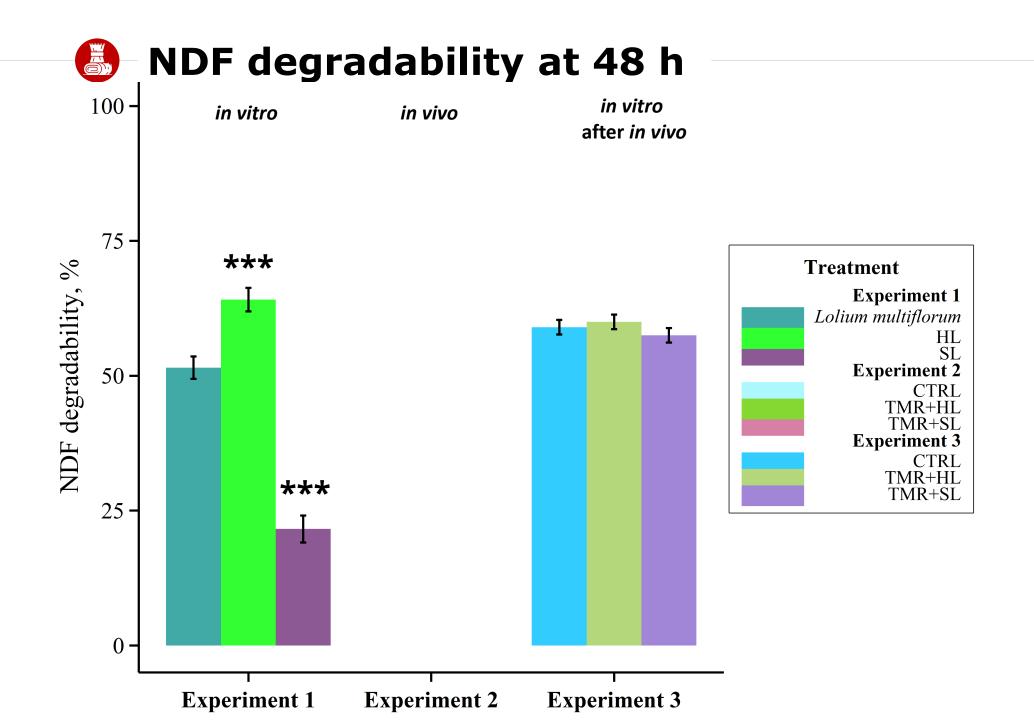

The value referes to rumen fluid collected to in vivo trials

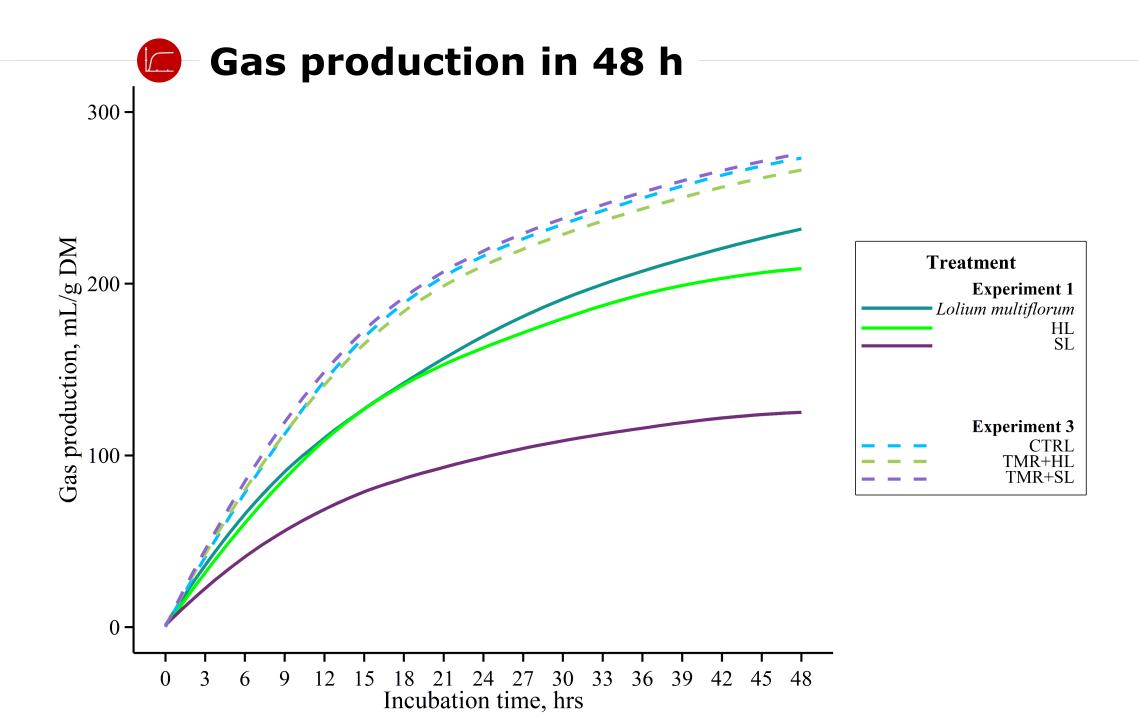


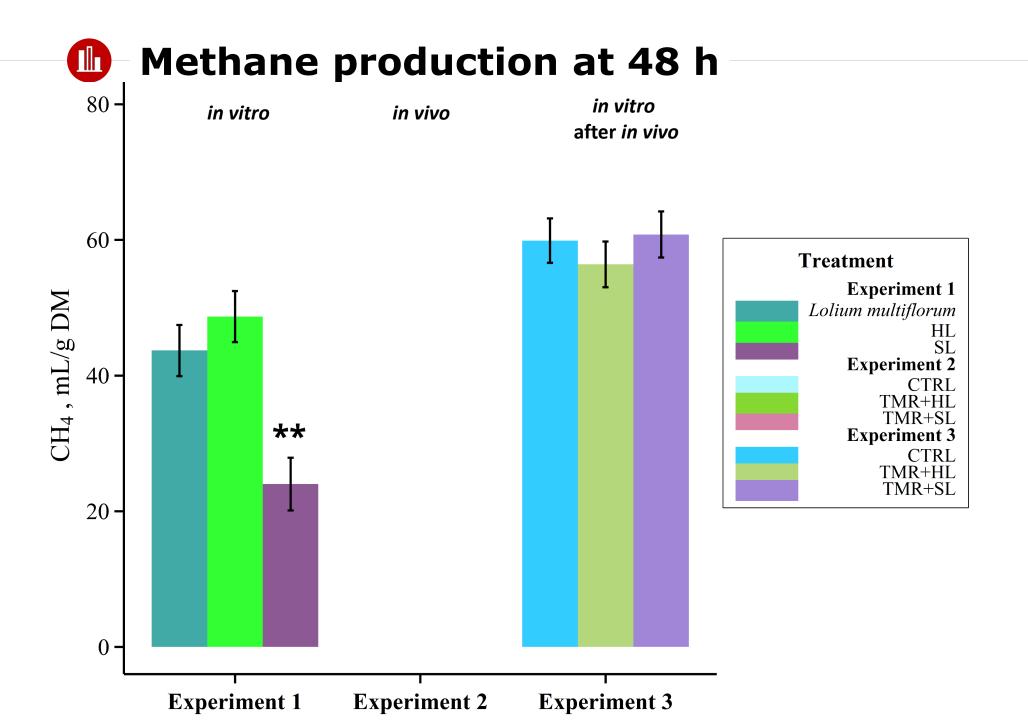
TMR+HL TMR+SL

CTRL TMR+HL

TMR+SL






Post-fermentation traits

Conclusions

✓ The pure substrates (Hemp and Savory Leaves) influenced significantly the ABP ratio, the NDF degradability.

- ✓ The pure substrates (Hemp and Savory Leaves) influenced significantly the ABP ratio, the NDF degradability.
- ✓ Savory Leaves changed the amount of propionic and n-butyric acids, and reduced both TGP and methane production (mL/g DM).

- ✓ The pure substrates (Hemp and Savory Leaves) influenced significantly the ABP ratio, the NDF degradability.
- ✓ Savory Leaves changed the amount of propionic and n-butyric acids, and reduced both TGP and methane production (mL/g DM).
- ✓ All the traits evaluated for Exp. 2 showed no significant differences.

- ✓ The pure substrates (Hemp and Savory Leaves) influenced significantly the ABP ratio, the NDF degradability.
- ✓ Savory Leaves changed the amount of propionic and n-butyric acids, and reduced both TGP and methane production (mL/g DM).
- ✓ All the traits evaluated for Exp. 2 showed no significant differences.
- ✓ The adapted or non-adapted rumen fluid (Exp. 3), showed no significant differences in the traits.

- → Necessity to study and characterize the herbs and the potential inhibitors of methane production
- → Testing by-products for the implementation in animal feeding strategies

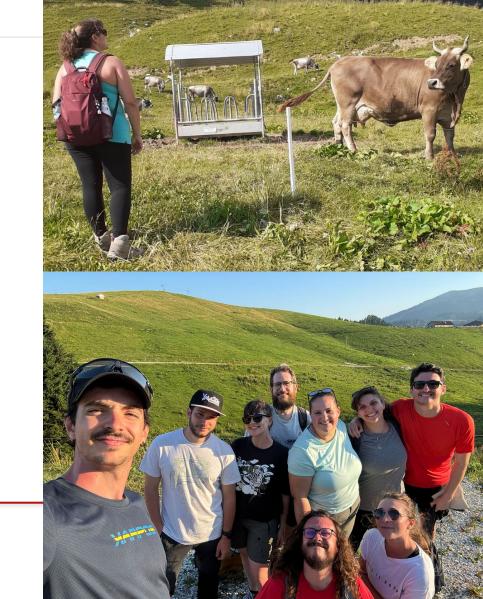
Thank you for the attention

Selene Massaro

PhD in Animal and Food Science, University of Padua

selene.massaro@phd.unipd.it

www.animalfoodscience.com



Viale dell'Università 16, 35020, Legnaro (PD)

Acknowledgments
This work is a part of *BIRD213117/21* (founded by the University of Padua).

Treatments composition

Chemical composition of treatments (% of DM)

Treatments	DM, %	СР	EE	NDF	ADF	ADL	Ash	AIA
Lolium multiflorum L. ¹	89.9	8.08	1.67	59.0	33.1	4.41	7.07	0.52
Cannabis sativa L. (HL)	92.0	19.6	7.12	30.5	15.8	5.29	13.9	0.09
Satureja hortensis L. (SL)	89.6	8.43	5.41	60.5	45.6	17.8	7.2	0.29
Total mixed ratio (TMR) ²	90.6	14.7	3.41	41.4	21.1	4.11	7.52	0.57

DM: Dry Matter.

CP: Crude Protein.

EE: Ether Extract.

NDF: Neutral Detergent Fiber.

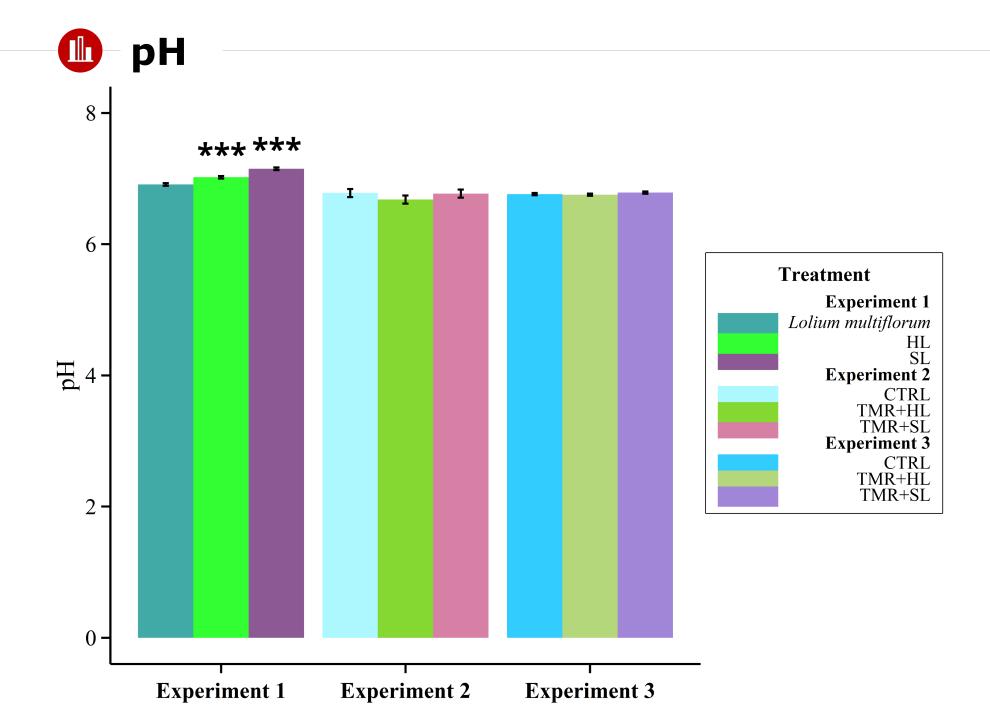
ADF: Acid Detergent Fiber.

ADL: Acid Detergent Lignin.

AIA: Acid Insoluble Ash

¹Lolium multiflorum L. was used in the in vitro test as a control for Experiment 1

²Total mixed ratio (TMR) was used in the *in vivo* and *in vitro* test as a control for Experiment 2 and 3.



Total mixed ratio composition

Ingredients	Quantity, % on DM
Energy mix	6.89
Protein mix	2.99
Sorghum silage	2.32
Alfalfa hay	2.27
Grass silage	1.92
Corn gluten	1.54
Molasses	0.97
Mixed hay	0.91
Soybean meal	0.45
Linseed + corn germ	0.27
TOTAL	<u>20.53</u>

