

Exploring Kaempferol 3-O-Glucoside as a Potential Feed Additive: *In vitro* Assessment for Mitigating Methane Emissions in Livestock Nutrition

¹Vastolo A., ²Formato M., ²Piccolella S., ¹Calabrò S., ²Pacifico S., ¹Cutrignelli M.I.

¹Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy ²Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy

Introduction

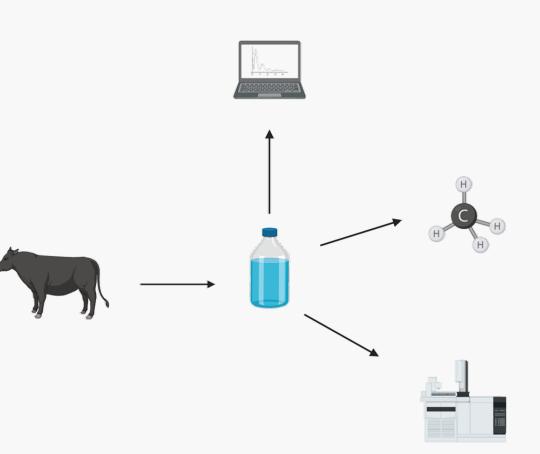
- Improving livestock animal health and performances
- Reduce methane emission
- Plants, dried or in the form of their extracts, or also pure specialised compounds (e.g., phenols, flavonoids tannins, saponins, etc.) could have effects on ruminal fermentation
- Identification of extracts, or pure compounds, in the unexplored plant materials, is becoming a new challenge in the animal husbandry sector

- ✓ An alcoholic extract (2.3 g), namely Fs/3/2, obtained by ultrasound assisted maceration from beech leaves of *Fagus sylvatica* L. was chromatographed .
- ✓ Astragalin was the most abundant in the studied polyphenol fraction.
- ✓The compound was identified as kaempferol 3-O-glucoside, bioactive constituent of various medicinal plants.
- ✓ Slow down reactive oxygen species production, and to modulate inflammation.

Formato et al. 2022

To evaluate by *in vitro* gas production technique the supplementation of pure kaempferol 3-O-glucoside, a metabolite abundant in the leaves of *Fagus sylvatica* L.

1. In vitro gas production


- √The pure compound was incubated at 0 (control), 5, 50 and 500 μM dose levels with a standard diet at 39 °C under anaerobic conditions for 24 and 120h.
- ✓Rumen liquor collected at slaughterhouse from four Italian Mediterranean buffaloes.

- √The gas produced was related to incubated OM (OMCV, ml/g)
- ✓The organic matter degradability (OMD, %) was assessed.
- ✓ Maximum fermentation kinetics (R_{max} , mL/h and T_{max} , h) were estimated
- ✓pH was mesured after 120h of incubation
- ✓ Volatile fatty acids (VFA) were assesed by gas-cromatography.

2. In vitro methane production

- ➤ For each dose of compound, two flasks of four, were stopped at 24 h to measure the methane (CH₄)
- The gas-phase from each flask was sampled (3 ml) in duplicate with a gastight syringe and injected into a gas chromatograph.
- ➤ The methane production was expressed related to related to degraded OM (dCH₄, ml/g)
- > The organic matter degradability (OMD, %) was assessed
- > Volatile fatty acids were determined

3. Metabolomic analysis of kaempferol ruminal fluid

□ *Kaempferol* 500 μM treated ruminal fluid (24h and 120h) was analysed through UHPLC-ESI-QqTOF-MS/MS.

4. Statical analysis

❖Shapiro-Wilk test, for normally distributed data, has been performed.

*The polynomial contrasts (0, 5, 50, and 500 μ M).

Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche

Tab. 1. *In vitro* methane production and main volatile fatty acids values obtained after 24 h of incubation.

Items		0	5	50	500	Polynom	MSE		
	Units					Linear	Quadratic	Cubic	
OMD	%	48.5	46.3	49.1	46.4	0.2659	0.4256	0.0011	0.17
OMCV	ml/g	108	108	103	99.5	0.0004	0.0572	0.0572	0.87
VFA	mmol/1	48.3	46.8	44.4	45.5	0.0016	0.0201	0.5743	0.23
dCH_4	ml/g	27.8	25.5	25.2	28.6	0.7653	0.0032	0.2677	1.25

OMD24h: organic matter degradability after 24 h of incubation; OMVC: cumulative volume of gas related to incubate organic matter; VFA_{24h} total fatty acids after 24h of incubation; dCH4: methane production related to degraded organic matter. MSE: mean square error.

Tab. 2. cumulative gas production, organic matter degradability and fermentation kinetics parameters of different doses after 120h of incubation.

Items		O	5	50	500	Polynomial contrast (p-value)			MSE
	Units					Linear	Quadratic	Cubic	
OMD	%	72.7	71.8	72.3	73.3	0.2201	0.0637	0.7950	0.27
OMCV	ml/g	262	275	283	285	0.0003	0.0099	0.0041	3.30
T_{max}	h	5.07	4.13	4.38	5.70	0.3478	0.0435	0.6213	0.31
R_{max}	m/l	8.23	9.64	9.41	8.69	0.7296	0.0256	0.3251	0.19

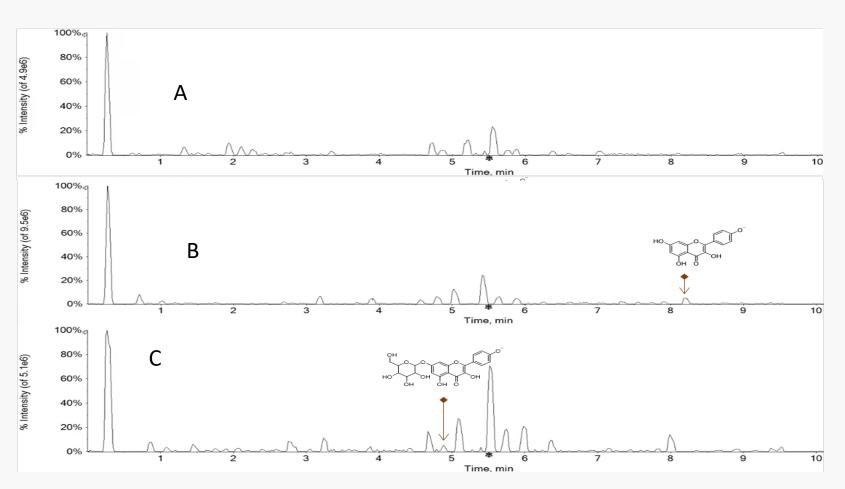
0: control; 5: 5 μ M concentration; 50: 50 μ M concentration; 500: 500 μ M concentration; OMD: organic matter degradability; OMVC: cumulative volume of gas related to incubate organic matter; R_{max} : maximum fermentation rate; T_{max} : time at which R_{max} occurs. MSE: mean square error.

Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche

Tab. 3. Effects of kaempferol 3-O-glucoside at different doses (0: control; 5: 5 μM concentration; 50: 50 μM concentration; 500: 500 μM concentration) on fermentation end-products after 120 h of incubation.

Items		0	5	50	500	Polynomial contrast (p-value)			MSE
	Units					Linear	Quadratic	Cubic	
рН		6.60	6.55	6.59	6.66	0.3854	0.3445	0.8551	0.005
VFA		80.8	74.4	73.6	75.5	0.0113	0.0036	0.0297	0.94
Acetate		53.4	51.2	50.7	53.4	0.0097	0.0598	0.0428	0.30
Propionate		15.3	13.7	13.6	13.5	0.0481	0.2420	0.1045	0.07
Iso-Butyrate	mmol/L	1.22	0.89	0.76	0.80	0.0004	<.0001	0.0012	6.5E-4
Butyrate		7.78	7.08	5.70	7.07	0.8020	0.0037	0.7060	0.04
Iso-Valerate		1.54	1.20	1.15	1.24	0.8145	0.6098	0.0595	0.003
Valerate		1.53	1.82	1.81	1.40	0.9237	0.7049	0.7821	0.02
BCFA	% VFA	2.99	2.47	2.29	2.36	0.0518	0.0606	0.0680	0.005
A/P		3.48	3.73	3.77	3.48	0.8339	0.8339	0.8339	0.03

VFA: total volatile fatty acid (acetate + propionate + butyrate + iso-butyrate + valerate + iso-valerate); BCFA: branched-chain fatty acid proportion (iso-butyrate + iso-valerate)/tVFA; A/P: acetate/propionate ratio. MSE: mean square error.


Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche

The amount of incubated kaempferol 3-O-glucoside was completely absent in ruminal fluid after 24 and 120 h of incubation.

The percentages of produced aglycone, compared to the amount of *kaempferol* at 24h of incubation was 23.0%.

The aglycone kaempferol was absent at 120 h of incubation.

Fig.1. TIC (Total Ion Chromatograms) of the ions tentatively identified as biotransformations mechanisms in the ruminal fluid at time of 24 (**A**) and 120 h (**B**) compared to a control (**C**).

Conclusion

Among the different test dose levels:

- 50 μ M is an optimal dose in terms of organic matter degradability (OMD), cumulative volume of gas (OMCV) and methane production after 24 h of incubation.
- Did not significantly modify organic matter degradability (OMD) after 120 h.
- The results suggest a change in the ruminal microbial population.
- Further studies are needed to demonstrate and deepen biotransformation mechanisms of plant secondary metabolites at ruminal fluid.

PROGETTI DI RICERCA DI RILEVANTE INTERESSE NAZIONALE PRIN 2022 Of the Italian Ministry of Research and University co-financed by EU next generation EU "Forest biomasses as reservoir of functional bioactives for animal welfare and ruminal fermentation (FoRUM) CUP: E53D23010840006"

This study was carried out within the Agritech National Research Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/2022, CN00000022). This manuscript reflects only the authors' views and opinions, neither the European Union nor the European Commission can be considered responsible for them.

