

Variation of zinc release from phytate by phytase is dependent of the level of dietary Zn supplementation in pig: a metaanalysis

Julien Labarre
Philippe Schmidely
Christelle Loncke
Marie-Pierre Letourneau-Montminy

Florence, Italy
September 1st / September 5th

Introduction

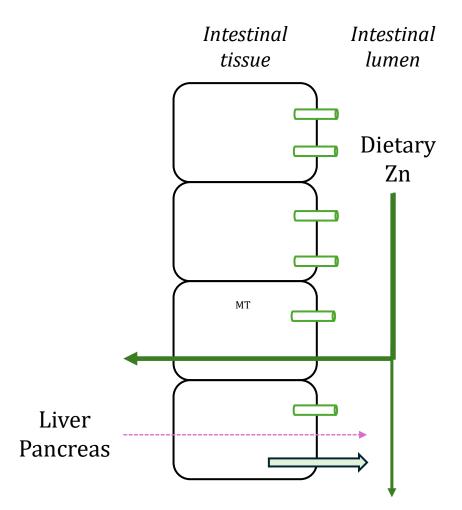
Zinc

Plays an important role as cofactor of many enzymes

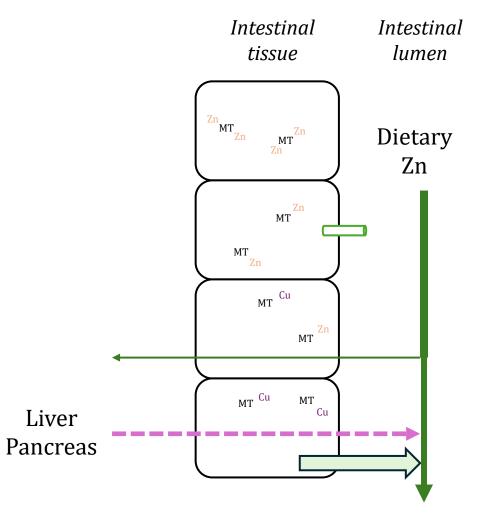
Low bioavaibility of Zn due to the interaction with Phytic P^1

Environmental impact of zinc

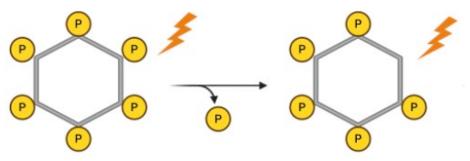
A zinc supplementation is used to reach the requirement of the pig
Soil accumulation of zinc


Solution

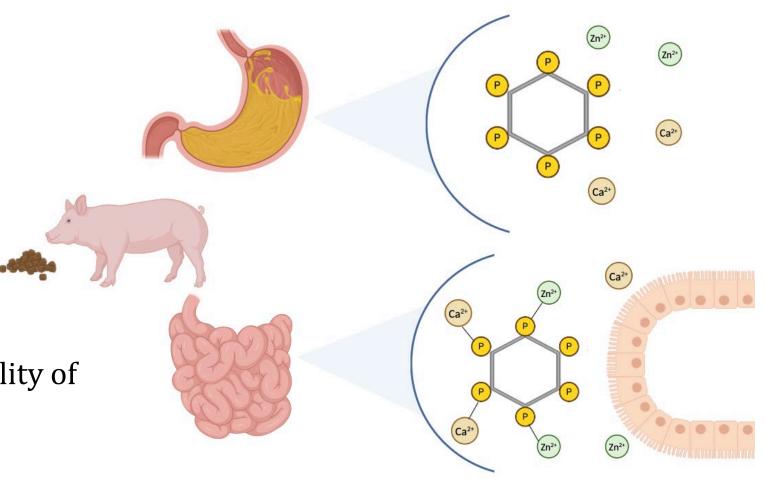
The breakdown of phytic acid by phytase can improve the availability of zinc for absorption¹.


¹Schelgel et al., 2013;

Background: zinc metabolism is highly regulated


Dietary zinc deficiency

Dietary zinc oversupply

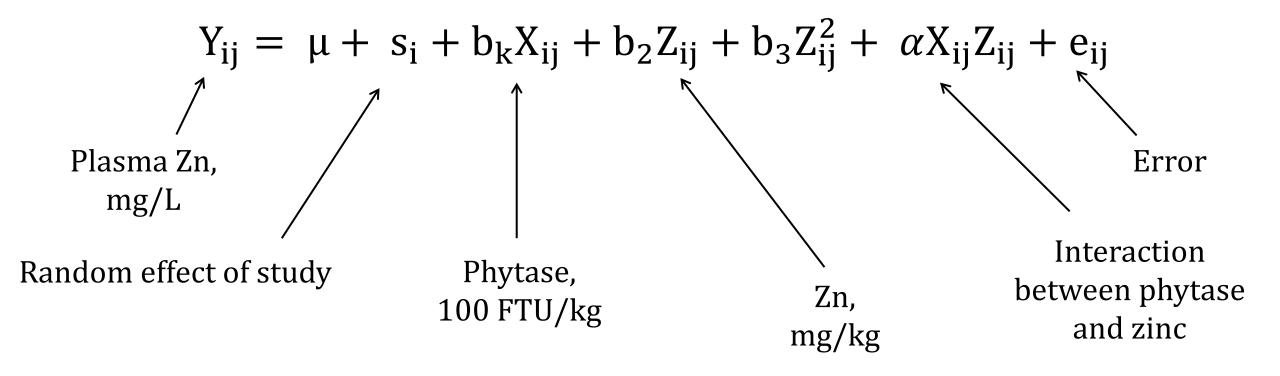

Background

P phytic degradation by phytase

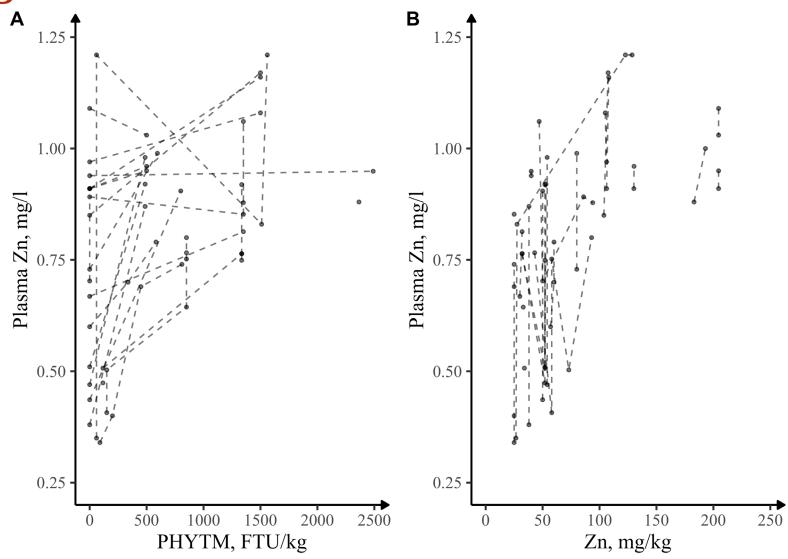
Hypothesis

The phytase improves the bioavaibility of zinc in smaller extent when zinc is oversupplied

Materials and methods


Literature search:

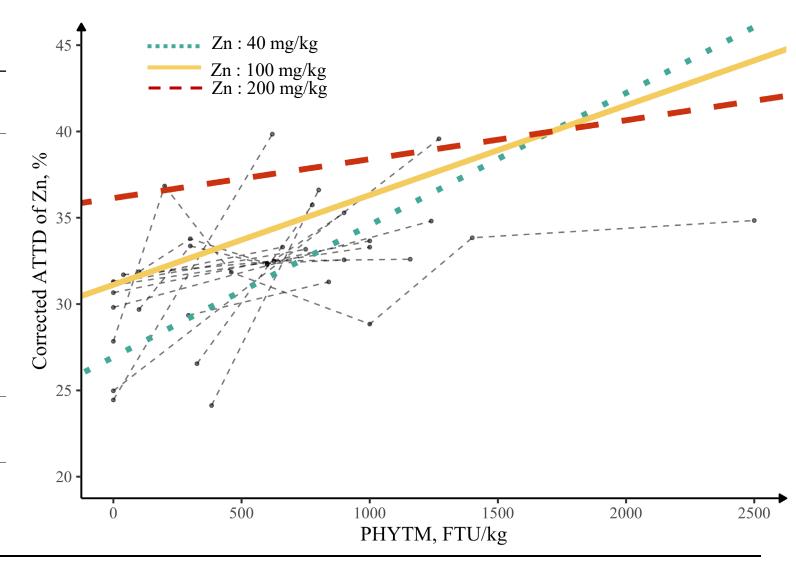
"pig", "phytase" and "zinc"


Criteria of inclusion:

- 1. Diet composition
- 2. Variation only of phytase or dietary zinc
- 3. Dietary supply over 250 mg/kg was removed

Materials and methods

Meta-design



Result: Plasma Zn is dependant of Zn and PHYTM

Plasma Zn (mg/l)	Coefficient	P	1.2				25				
Constante	0.057	0.46	1 -					_ · _ ·			
PHYTM	0.064	<0.001	(L/gn +						149	%	
PHYTM ²	-0.002	<0.001	18 Zn (mg/l) 9.0 9.0	,					PH	YTM-0	
Zinc	0.011	<0.001	Plasma + 0.0		34	.%				YTM - 250 YTM - 500	
Zinc ²	-0.0001	<0.001	0.2 +							YTM - 300 YTM - 1000)
Zinc x PHYTM	-0.0001	<0.001	0						PH	YTM - 1500)
$R_{adj}^2 = 0.82$; RMSE = 0.10 (mg/l)			0	20	40	60 Zi	80 inc (mg/l	100 (g)	120	140	160

Result

ATTD of Zn, %	Coefficient	P				
Constante	21.004	0.46				
PHYTM	0.839	<0.001				
Zinc	0.007	<0.001				
Zinc x PHYTM	-0.0045	0.02				
$R^2 = 0.89$; RMSE = 2.53						

Discussion

• The quadratic response of plasma Zn to dietary Zn agrees with Schlegel et al., 2013

• Phytase hydrolyses phytic P avoiding the formation of Zn-phytic P complexes² in the digestive tract of pig and making more Zn available for absorption^{1,3}.

• Zn metabolism is regulated by its absorption and its endogenous secretion (biliary and pancreatic secretion). With phytase, Zn is more available for absorption, and the supplemental Zn absorption activate the regulation of Zn leading to less absorption and more endogenous secretion (negative interaction in the model)

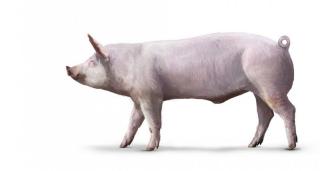
¹Schelgel et al., 2013; ²Selle and Ravindran, 2008; ³Bikker et al., 2012

Conclusion

• Phytase and dietary Zn increase plasma Zn and ATTD of Zn

• Due to the metabolism of Zn, the effect of phytase is modulated as dietary Zn increase

• Numerous fluxes on Zn exist in the digestive tract of pig, and a mechanistic representation of the system is needed to better understand the variation of the absorption and the endogenous secretion in response to dietary Zn or phytase



universite PARIS-SACLAY

Thank for your attention!

Laboratoire International Associé

julien.labarre.1@ulaval.ca

