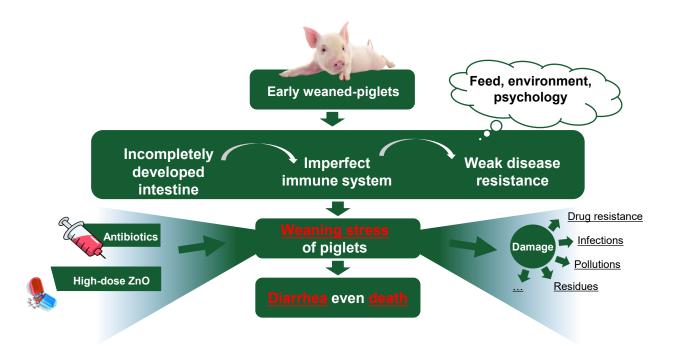


Effect of hydrolyzed yeast from *Kluyveromyces fragilis* replacing high-dose zinc oxide on growth performance, diarrhea incidence and intestinal health of weaned piglets

C. Yin, M. Comi, W. Chen, V. Perricone, W. Sun, Y. Pi, Y. Li, A. Agazzi, X. Li, X. Jiang

Florence, Italy

2024.09.02


Outlines

01 Background

02 Experiments

03 Conclusions and plans

01 Background

EU regulations

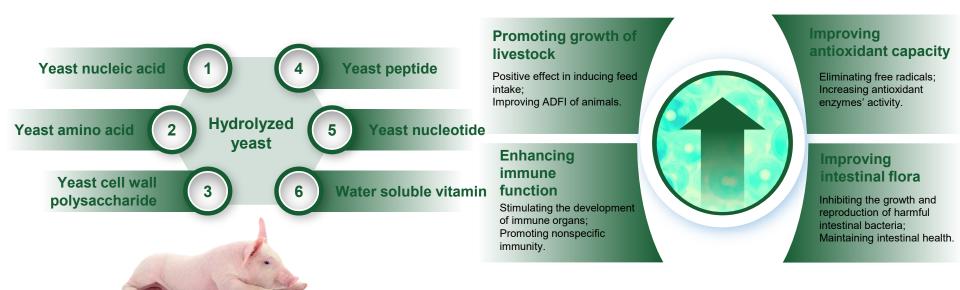
Antibiotics

From January 1, 2006, using antibiotic growth promoters in livestock feed is prohibited.

ZnO

In June 2022, using high-dose zinc oxide in livestock production was completely banned, and the amount of zinc added to the feed shall not exceed 150 mg/kg.

Chinese regulations


Antibiotics

From July 1, 2020, producing commercial feed containing growth-promoting drug feed additives (except traditional Chinese medicine) are not allowed.

ZnO

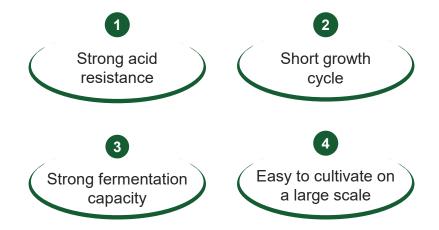
In 2017, Chinese government stipulated that the amount of zinc added to the feed in the form of zinc oxide in the first two weeks after weaning should not exceed 1600 mg/kg.

- The hydrolysate of yeast cells, obtained by autolysis or hydrolysis with external enzymes.
- Characteristics: non-toxic, non-polluting, no side effects, not producing drug resistance etc.

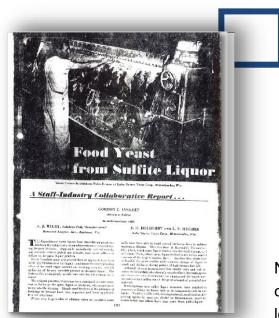
(FU et al., J ANIM SCI BIOTECHNO, 2023; LIN et al., POULTRY SCI, 2022; FU et al., ANIM NUTR, 2019.)

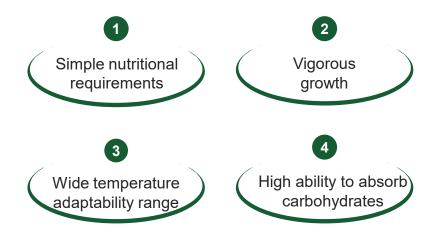
Main source of hydrolyzed yeast

- > Saccharomyces cerevisiae
- Beer yeast
- Molasses yeast
- Candida albicans
- Bread yeast
- > Kluyveromyces fragilis



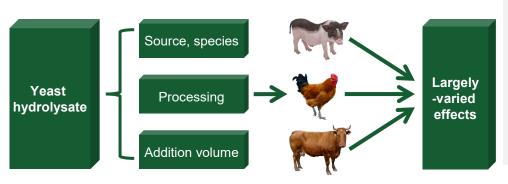
Saccharomyces cerevisiae & its hydrolysate


Ascomycete yeast, unicellular eukaryotic microorganism


Fu et al. (2021) reported that adding brewer's yeast hydrolysate to the feed of weaned piglets improved the growth performance by promoting intestinal barrier function, indicating that brewer's yeast hydrolysate can be used as a potential alternative to antibiotic growth promoters in production.

Kluyveromyces fragilis & its hydrolysate

Unicellular microorganism, facultative anaerobe



Nguyen et al. (1998) reported that the cell wall components of *Kluyveromyces fragilis* contain a high concentration of glucan, which has the function of immunomodulation and lowering serum cholesterol levels;

Keimer et al. (2018) reported that *Kluyveromyces fragilis* has a higher concentration of amino acids (lysine etc.) than *Saccharomyces cerevisiae*.

Nutritional value of Kluyveromyces fragilis and Saccharomyces cerevisiae hydrolysates

Items	<i>Kluyveromyces</i> <i>fragilis</i> hydrolysate	<i>Saccharomyces</i> <i>cerevisiae</i> hydrolysate
Nutrient levels	s (%)	
Mannan	5.48	5.00
β-glucan	9.66	8.00
Lysine	1.23	0.50
Methionine	0.20	0.10
Arginine	0.88	0.40
Histidine	0.17	0.20
Leucine	0.59	0.60
Cysteine	0.20	0.10

Hydrolyzed yeast from Kluyveromyces fragilis (HK) Regulation **Effect** Mechanism Alternatives to **Gut health** 'Antibiotics' and 'Zn'

Research aim and significance

Aim

To investigate the regulatory mechanism of dietary Kluyveromyces fragilis hydrolysate (HK) supplementation on growth performance and intestinal health of weaned piglets.

Significance

- Providing scientific basis for the application of HK in weaned piglets;
- Providing theoretical basis for the development of new green antibiotics and high-dose ZnO substitutes.

02 Experiments

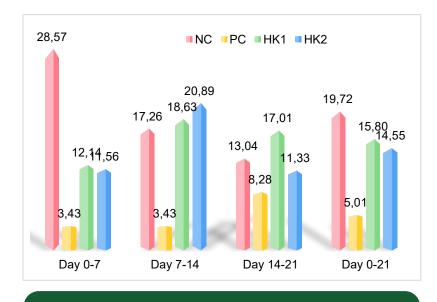
Study 1

Effects of different doses of dietary HK supplementation on growth performance, diarrhea incidence and blood indicators of weaned piglets

Experimental animals

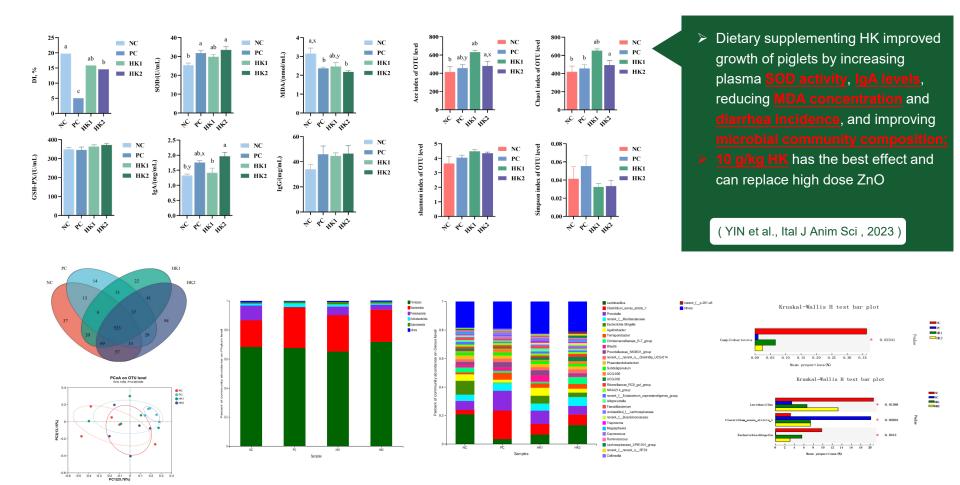
A total of 100 weaned piglets (Duroc x Landrace x Yorkshire; body weight 7.03 ± 0.14 kg).

Experimental design


According to initial body weight, the animals were randomly assigned to 4 treatments, with 5 replicates (pens) per treatment and 5 piglet per replicate (pen).

Treatments Growing stage	NC	PC	НК1	НК2
0-21 d	-	2 g/kg	7.5 g/kg	10 g/kg

NOTE: NC represents negative control group; PC represents positive control group supplemented with ZnO; HK represents treatment group supplemented with Kluyveromyces fragilis hydrolysate.


Study 1 - Results

			HK,			
Items	NC	PC	7.5	10	SEM	<i>P</i> -value
BW, kg						
Day 0	7.03	7.03	7.03	7.03	0.67	0.999
Day 7	7.13 ^y	7.82 ^x	7.39 ^{xy}	7.37 ^{xy}	0.69	0.058
Day 14	8.50	8.80	8.66	8.74	0.83	0.856
Day 21	10.84	10.77	10.79	10.77	1.13	0.999
ADG, g						
Day 0-7	14.30 ^b	113.20a	51.47 ^{ab}	48.53 ^{ab}	20	0.034
Day 7-14	195	140	178	186	41	0.815
Day 14-21	334	281	290	271	51	0.597
Day 0-21	181	178	179	178	26	0.999
ADFI, g						
Day 0-7	123 ^y	176×	158 ^{xy}	159 ^{xy}	14	0.081
Day 7-14	330 ^{xy}	352 ^x	351 ^{xy}	309 ^y	22	0.082
Day 14-21	563	513	557	534	65	0.909
Day 0-21	339	347	355	334	29	0.915
G:F ratio						
Day 0-7	0.210	0.625	0.356	0.301	0.144	0.233
Day 7-14	0.593	0.398	0.497	0.592	0.110	0.641
Day 14-21	0.588	0.516	0.511	0.532	0.061	0.640
Day 0-21	0.536	0.498	0.501	0.529	0.041	0.886

Dietary HK with 10 g/kg reduced the diarrhea incidence of weaned piglets

Study 1 - Results

Study 1 - Summary

1

Dietary supplementing 10 g/kg HK reduced the diarrhea rate of weaned piglets from 0 to 21 days, increased plasma SOD activity and IgA levels, and reduced plasma MDA content;

2

High dose of dietary ZnO reduced the diarrhea incidence of weaned piglets from 0 to 21 days, increased plasma SOD activity, and reduced plasma MDA content;

3

The effect of adding 10 g/kg HK to the diet was better than that of 7.5 g/kg HK.

Under the conditions of this study, the optimal dietary HK addition is 10 g/kg.

Study 2

Effects of different doses of dietary HK as antibiotics and ZnO substitute on growth performance, diarrhea incidence and intestinal health of weaned piglets

Experimental animals

A total of 160 weaned piglets (Duroc x Landrace x Yorkshire; body weight 8.87 ± 0.58 kg).

Experimental design

According to initial body weight and 2×2 factorial design, the animals were randomly assigned to 4 treatments, with 8 replicates (pens) per treatment and 5 piglet per replicate (pen).

Treatments	-	ZnO	+ ZnO (2 g/kg)			
Growing stage	NC-	HK-	NC+	HK+		
Early nursery stage (0-14 d)	-	10 g/kg HK	-	10 g/kg HK		
Late nursery stage (14-42 d)	-	5 g/kg HK	-	5 g/kg HK		

NOTE: NC represents control group; HK represents treatment group which supplemented with Kluyveromyces fragilis hydrolysate; '+' and '-' represents whether or not supplement ZnO; no ZnO was added in post nursery stage.

Study 2 - Results – Growth performance

	BW, kg			ADG, g			ADFI, g				G:F					
	d 0	d 14	d 28	d 42	d 0-14	d 14-28	d 28-42	d 0-42	d 0-14	d 14-28	d 28-42	d 0-42	d 0-14	d 14-28	d 28-42	d 0-42
Interaction effects																
NC-	8.87	9.88	14.43	20.64	72	325	444	280	251	592	860	568	0.24	0.55	0.52	0.49
HK-	8.87	10.34	15.31	23.19	105	355	563	341	269	626	941	612	0.37	0.58	0.61	0.57
NC+	8.87	10.89	15.00	22.46	145	293	533	324	278	596	910	595	0.53	0.50	0.59	0.55
HK+	8.87	11.02	16.07	24.24	154	360	583	366	292	710	1009	658	0.53	0.53	0.58	0.57
SEM	0.575	0.589	0.875	1.151	15.0	27.2	36.2	18.0	22.6	55.6	61.9	38.0	0.047	0.037	0.029	0.025
Main effects																
ZnO																
-	8.87	10.11 ^b	14.87	21.91 ^y	89 ^b	340	503 ^y	311 ^y	260	609	900	590	0.31^{b}	0.56	0.56	0.53
+	8.87	10.96 ^a	15.53	23.35 ^x	149 ^a	327	558 ^x	345 ^x	285	653	960	626	0.53^{a}	0.51	0.59	0.56
SEM	0.393	0.405	0.615	0.843	11.7	20.4	27.8	14.3	15.6	39.6	44.6	26.9	0.036	0.026	0.024	0.020

488^b

573^a

26.5

0.067

0.007

0.242

 302^{b}

353^a

13.2

0.063

0.007

0.605

264

281

15.6

0.152

0.332

0.903

594

668

39.6

0.410

0.165

0.451

885^y

975^x

44.6

0.226

0.073

0.848

581

635

26.9

0.270

0.107

0.773

0.39

0.45

0.046

< 0.001

0.212

0.229

0.52

0.55

0.026

0.161

0.427

0.920

0.55

0.60

0.023

0.370

0.150

0.085

Diet NC

HK

SEM

P-value ZnO

Diet

ZnO × diet

8.87

8.87

0.393

0.934

0.934

1.000

10.39

10.68

0.418

< 0.001

0.165

0.434

14.71^b

15.69^a

0.607

0.162

0.046

0.842

 21.55^{b}

23.71^a

0.811

0.064

0.008

0.608

109

130

13.5

< 0.001

0.168

0.436

309^y

 358^{x}

19.5

0.604

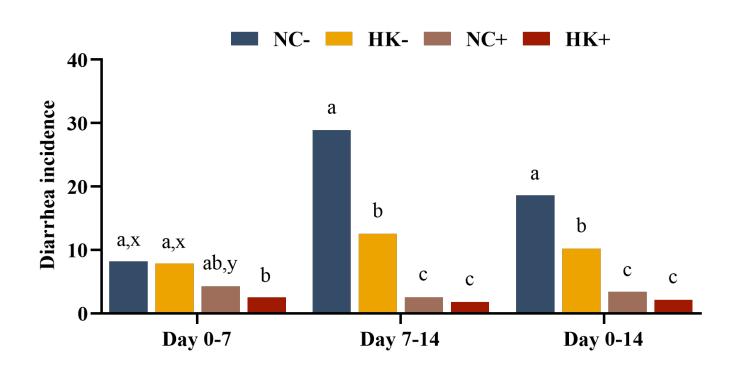
0.064

0.469

		AD	G, g	ADFI, g					
d 42	d 0-14	d 14-28	d 28-42	d 0-42	d 0-14	d 14-28	d 28-42	d 0-42	
20.64	72	325	444	280	251	592	860	568	
23.19	105	355	563	341	269	626	941	612	

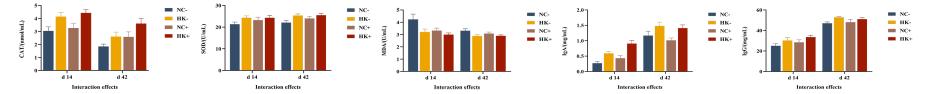
 0.52^{y}

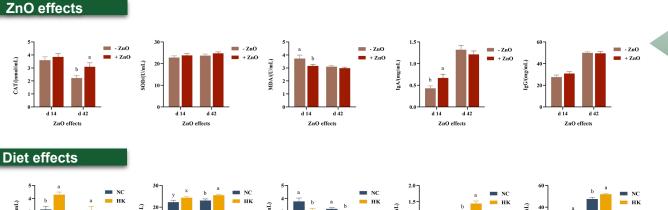
 0.57^{x}


0.018

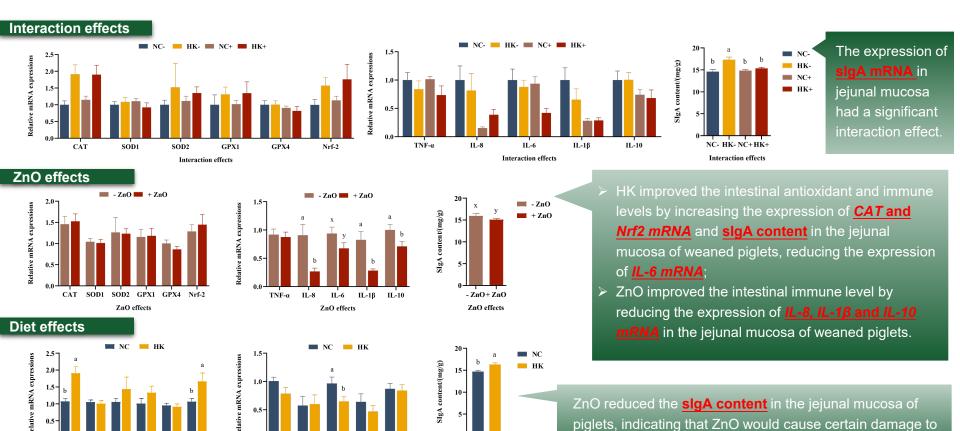
0.278

0.075


0.366


Study 2 - Results - Dirrhea incidence

Study 2 - Results - Plasma indices


Interaction effects

- enhanced antioxidant and immune levels by increasing the plasma CAT and SOD activities, IgA and IgG concentrations of weaned piglets, reducing the **MDA** concentration
- ZnO enhanced the antioxidant and immune levels by increasing the plasma CAT activity and IgA concentration of weaned piglets.

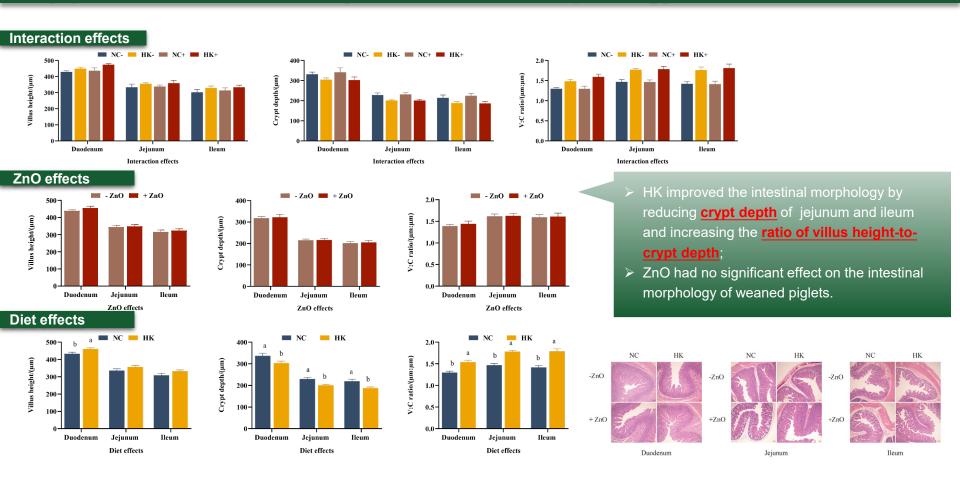
Study 2 - Results - Gene expression

NC HK

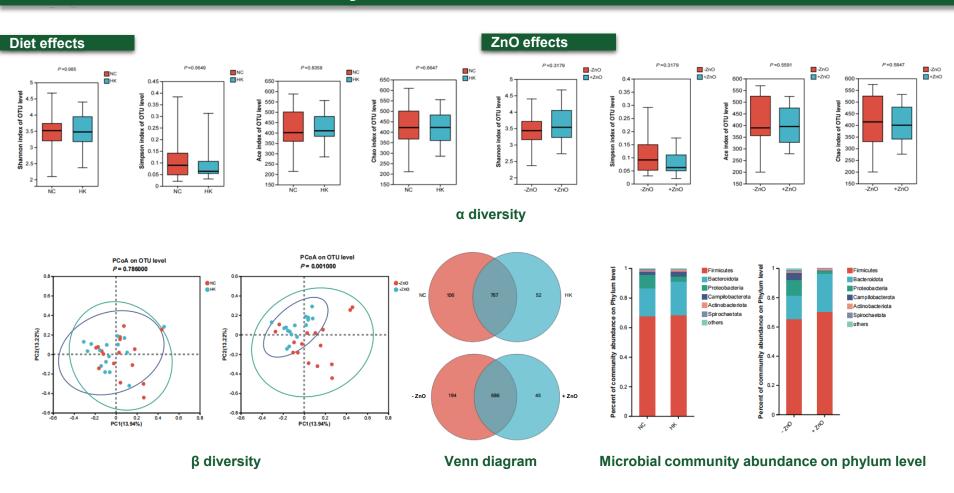
Diet effects

CAT SOD1 SOD2 GPX1

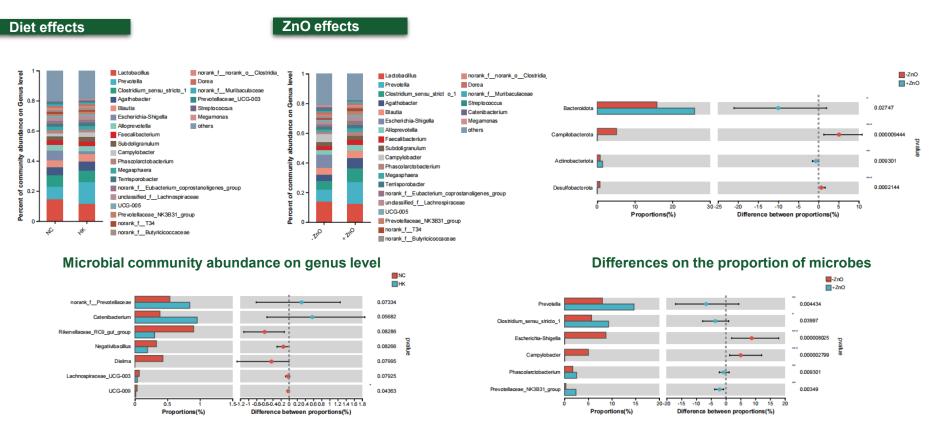
Diet effects


TNF-a

IL-1β


Diet effects

the intestinal immune barrier function.


Study 2 - Results - Morphology

Study 2 – Results - Microbiota

Study 2 - Results

Differences on the proportion of microbes

Study 2 - Summary

Dietary HK with long-term can improve the growth performance of piglets;

Dietary HK reduced the diarrhea incidence of weaned piglets;

Dietary HK improved the antioxidant and immune functions, reduced intestinal inflammatory response, and improved intestinal tissue morphology and barrier function.

Dietary supplementing HK can replace high-dose ZnO to a certain extent.

03 Conclusions and plans

Conclusions

- ➤ Dietary HK improved growth performance and reduce diarrhea incidence of weaned piglets, which may be attributed to the enhanced antioxidant and immune functions, down-regulated intestinal inflammatory response, improved intestinal morphology and barrier function;
- ➤ HK (10 g/kg) has the potential to replace high-dose ZnO in weaned piglets.

Further plans

- ➤ Use multi-omics technology, to reveal the key metabolites of HK acting on the target organs of weaned piglets, and to clarify the key targets and intrinsic molecular mechanisms of HK regulating the antioxidant and immune functions of the intestine of weaned piglets;
- ➤ Utilize the liver of weaned piglets as the target organ, to investigate whether HK can promote animal health and growth performance by improving the antioxidant function.

Thank you very much for your attention!

Prof. Dr. Xian-Ren Jiang
jiangxianren@caas.cn
+86 15801524430
Zhongguancun Nandajie 12, Haidian
District, Beijing, 100081 China