

Productive performance and nitrogen excretion of fast-, medium- and slow-growing chicken genotypes fed diets varying in protein-to-energy ratio

M. Zampiga¹, M. Petracci¹, R. Piscitelli¹, F. Volpe¹, F. Ceccaroni², F. Sirri¹

¹ Department of Agricultural and Food Sciences, *Alma Mater Studiorum* - University of Bologna, Ozzano dell'Emilia, Italy

²Gesco S.C.A., San Vittore di Cesena, Italy

Introduction

The use of slower-growing chicken genotypes for meat production is expected to increase substantially in the next decades due to:

- Animal welfare concerns
- Product quality issues

Slower-growing chicken genotypes:

- High welfare standards
- Better meat quality traits
- Low productive performance, feed efficiency and meat yield
- Limited knowledge about nutrient requirements and nutritional strategies to optimize productive and sustainability traits

From Hubbard website

From Aviagen website

Aim of the study

To evaluate the productive performance and nitrogen excretion of chicken genotypes characterized by different growth rate

- Fast-growing (<u>FG</u>; >70 g/bird/d)
- Medium-growing (<u>MG</u>; 40-50 g/bird/d)
 - Slow-growing (<u>SG</u>; 30-40 g/bird/d)

when **fed** either:

- Conventional basal diet (<u>CON</u>) formulated to meet FG broilers requirements
- CON diet with reduced crude protein-to-metabolizable energy ratio (-10% protein; <u>LOW</u>) representative of commercial diets used for slower-growing chickens

Materials and Methods

Experimental design

1,800 one-day-old male chicks

(600 for each genotype)

		Genotype								
		FG	MG	SG						
Diet	CON	FG-CON	MG-CON	SG-CON						
	LOW	FG-LOW	MG-LOW	SG-LOW						

- Each experimental group was composed by 6 replicate pens of 50 birds each (i.e., 300 broilers/group)
- Growth performance parameters were recorded at the end of each feeding phase (0, 13, 28 and slaughter age)
- At slaughtering (34, 50 and 77 days for FG, MG and SG, respectively), broilers were individually weighed to evaluate body weight uniformity
- Broilers were then processed in a commercial processing plant to assess slaughter yields and occurrence of footpad dermatitis

Ganatuna

Materials and Methods

Diets

	Starter (0-13 d)		Grower	(14-27 d)	Finisher (28 d – slaughter)			
Ingredients (%)	CON	LOW	CON	LOW	CON	LOW		
Corn	29.19	35.89	32.48	39.13	39.23	45.41		
Wheat	25.00	25.00	25.00	25.00	25.00	25.00		
Soybean meal	17.49	15.87	17.65	15.85	16.33	14.93		
Full-fat soybean	10.72	5.47	13.65	8.63	8.63	3.97		
Pea	3.00	3.00	3.00	3.00	3.00	3.00		
Sunflower meal	3.00	3.00	3.00	3.00	3.00	3.00		
Corn gluten meal	3.00	3.00	0.00	0.00	0.00	0.00		
Vegetable oil	1.51	1.51	1.75	1.75	2.00	2.00		
Others	7.09	7.26	3.47	3.64	2.81	2.69		
Chemical composition								
AMEn (kcal/kg)	3.016	3.016	3.070	3.070	3.100	3.101		
Crude protein (%)	22.50	20.34	20.51	18.29	18.50	16.51		
Lipids (%)	5.43	4.62	6.11	5.38	5.55	4.84		
Ashes (%)	4.86	4.67	4.42 -9.6	4.27	4.02 ₋₁₁	. 7% 3.82		
Av. Lys (%)	1.25	1.15	1.15	1.04	1.02	→(0.90)		
Av. Met+Cys/Av. Lys	0.75	0.74	0.77	0.77	0.80	0.80		
Av. Arg/Av. Lys	1.07	1.06	1.11	1.09	1.12	1.10		
Total calcium (%)	0.68	0.68	0.58	0.58	0.54	0.52		
Total phosphorous (%)	0.54	0.54	0.44	0.43	0.37	0.35		

Materials and Methods

Nitrogen excretion

N excreted = N input from feed - N retained in the body

 \sum Feed intake phase \times N content feed

Whole-body N content at slaughter age

6 birds/group (1 bird/replicate pen)

humanely euthanized (CO₂ method)

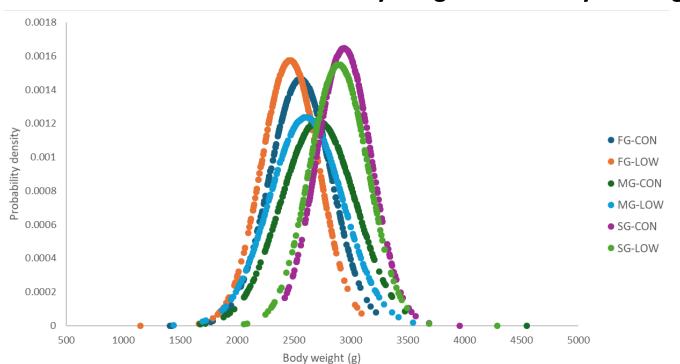
whole body frozen in liquid nitrogen and grinded to obtain homogenous samples

N content determination through Kjeldahl method

Growth performance in the overall rearing cycle

(FG: 0-34 days; MG = 0-50 days; SG = 0-77 days)

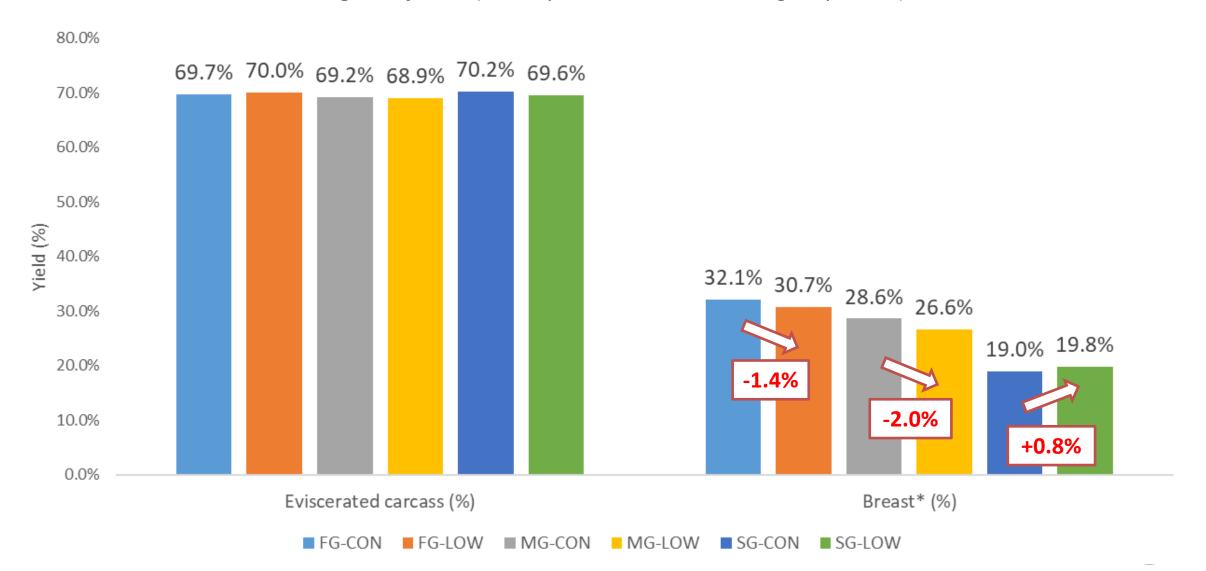
Trait	Group					Genotype (G)				Diet (D)		SEM	<i>P</i> -value			
	FG-CON	FG-LOW	MG-CON	MG-LO	w sg-co	N SG-LOW	FG	M	ì	SG	CON	LOW		GxD	G	D
DWG (g/bird/d)§	69.6	66.9	52.9	50.8	37.0	36.9	68.3	A 51.	9 B	37.0 C	53.2	51.5	2.18	0.06	<0.001	<0.001
Final BW (g/bird)	2482 d	2375 e	2686 b	2581	c 2891	a 2877 a	2429	C 263	3 B	2884 A	2686	2611	33.2	0.04	<0.001	<0.001
DFI (g/bird/d) [§]	100.2	99.2	94.6	93.1	99.2	98.6	99.7	A 93.	9 B	98.9 A	98.0	97.0	0.54	0.86	<0.001	0.10
FCR [§]	1.440 e	1.482 d	1.790 c	1.833	b 2.679	a 2.673 a	1.461	C 1.81	1 B	2.676 A	1.969	1.996	0.09	0.02	<0.001	<0.01
Mortality [†] (%)	1.33	2.00	1.00	1.65	0.67	1.00	1.67	1.3	3	0.83	1.00	1.55	0.01	0.96	0.42	0.29


[§] Corrected for mortality.

error of the mean.

Means showing different letters are significantly different (A,B: P<0.01; a,b: P<0.05). DWG, daily weight gain; BW, body weight; DFI, daily feed intake; FCR, feed conversion ratio; SEM, standard

Body weight uniformity at slaughtering



Group	CV (%)
FG-CON	10.7%
FG-LOW	10.3%
MG-CON	12.1%
MG-LOW	12.4%
SG-CON	8.2%
SG-LOW	8.9%

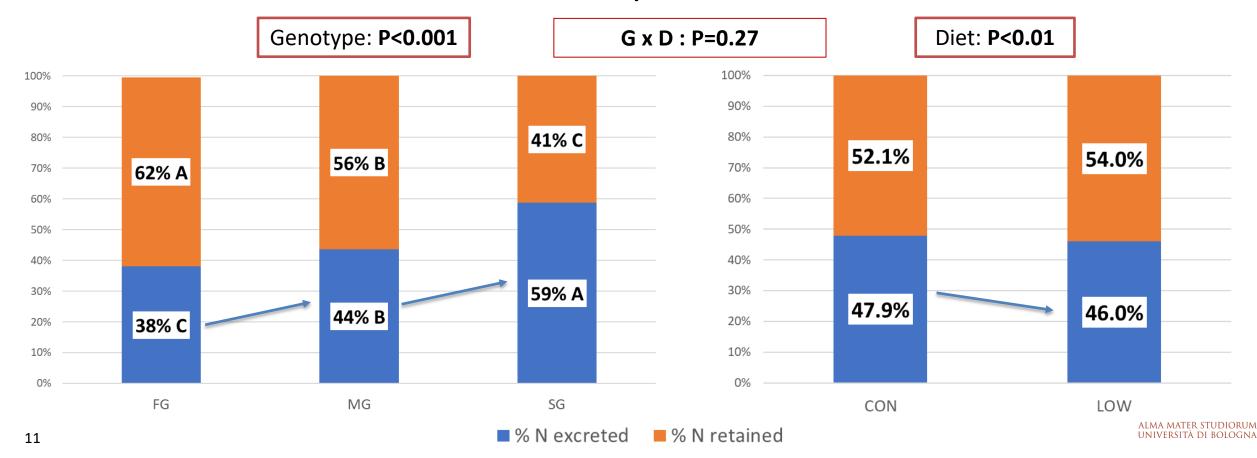
Factor	Comparison	P-value
	FG vs. MG	P<0.001
Genotype	FG vs. SG	P<0.0001
	MG vs. SG	P<0.0001
Diet	CON vs. LOW	0.11

Slaughter yields (on all processed birds on a group basis)

n processed birds = 272, 276, 273, 278, 274, 279, respectively for FG-CON, FG-LOW, MG-CON, MG-LOW, SG-CON and SG-LOW * Expressed as % of eviscerated carcass weight

Occurrence of footpad dermatitis at slaughtering

Factor	Comparison	P-value			
Genotype	FG vs. MG vs. SG	P<0.00001			
Diet	CON vs. LOW	0.41			



Nitrogen excretion (g/kg BWG)

	Group							G	enotype	e (G) Diet (D)			SEM		<i>P</i> -value	
	FG-CON	FG-LOW	MG-CO	N MG-L	ow	SG-CON	SG-LOW	FG	MG	SG	CON	LOW	SEIVI	GxD	G	D
N excretion (g/kg BWG)	17.5 E	15.8 F	24.1	C 21.3	D	46.5 A	42.6 B	16.7	C 22.7 I	В 44.5 А	29.4	26.6	2.04	0.02	<0.001	<0.001

N excreted/N retained

Conclusions

- The reduction of the protein-to-energy ratio worsened the growth performance of FG and MG chickens,
 while had no relevant effects on productive traits of the SG strain
- Body weight uniformity was influenced by the chicken genotype, with the worst uniformity observed in the MG group and the best in the SG group
- The occurrence of footpad dermatitis was very limited, even though FG birds showed a higher propensity to develop these lesions
- Nitrogen excretion was significantly influenced by both genotype and diet, with SG birds fed the CON diet showing the highest excretion per kg of weight gain. The N excreted-to-N retained ratio was significantly affected by both factors

Increasing the dietary protein content do not seem to be a valid strategy to improve productive performance and efficiency of SG chickens, while also determined higher N excretion.

In FG and MG chickens, the reduction of the crude protein content improved N excretion but had detrimental effects on growth performance

Acknowledgments

This study was carried out within the framework of the PRIN project "EU-MeatChanges - *The European Chicken Commitment challenge: toward the use of novel genotypes with slower-growth rate for meat production*", which was funded by the Italian Ministry of University and Research (PRIN National Grant 2022 — Prot. 20228ANBKH)

Thanks for your attention!

Productive performance and nitrogen excretion of fast-, medium- and slow-growing chicken genotypes fed diets varying in protein-to-energy ratio

M. Zampiga¹, M. Petracci¹, R. Piscitelli¹, F. Volpe¹, F. Ceccaroni², F. Sirri¹

¹ Department of Agricultural and Food Sciences, *Alma Mater Studiorum* - University of Bologna, Ozzano dell'Emilia, Italy

²Gesco S.C.A., San Vittore di Cesena, Italy