▶ Building sustainable systems at the era of Farm to Fork and agroecology: Unraveling the interplay of quality attributes of animal-source foods

Bénédicte Lebret¹, M. Gagaoua¹, C. Van Baelen¹, S. Prache²

INRAE ¹PEGASE 35590 St-Gilles, ²UMRH 63122 St-Genès-Champanelle, France

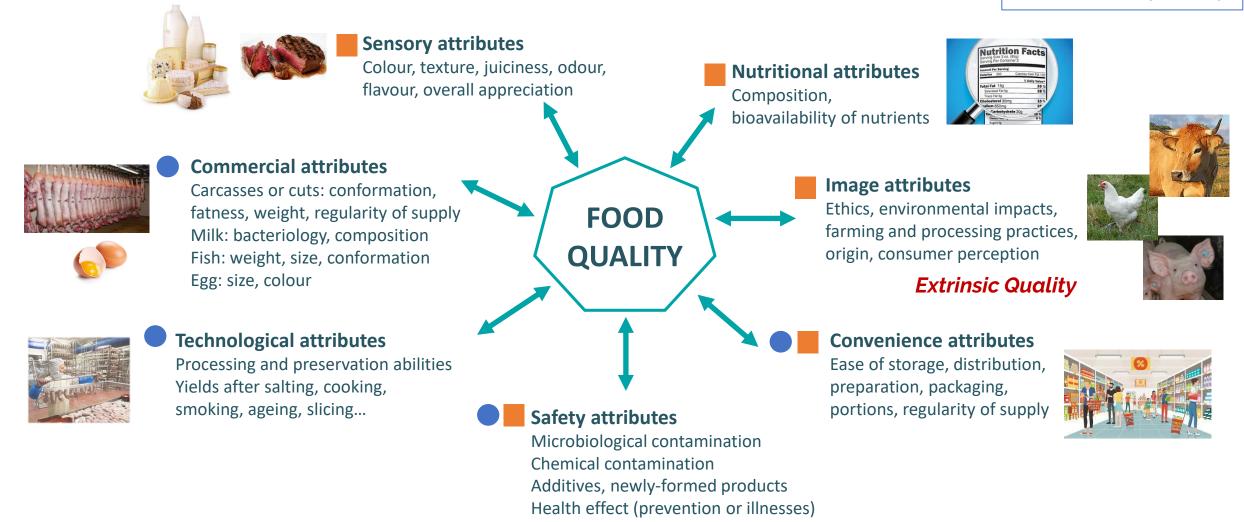
> Introduction - Context

Animal-source foods

- High consumption level in 'Western' countries (but variations among countries, consumers)
- Expected important increase in global demand by 2050
- Key issues for animal-source foods: environmental impacts, human health, ethics
 - Acceptability and sustainability of farming systems and animal source foods: environmental, social and economic dimensions?
 van der Linden et al, 2020
- Commitments of stakeholders at various scales (Farm to fork strategy, EU Green deal) to diversify
 products and move towards more sustainable food systems: do more (or better) with less inputs and
 impacts

 Yu & Jensen, 2022; Hinrichsen & Stoier, 2024
 - Linked and refers to the Quality of food products

All the **attributes** that give food the ability to **satisfy the expressed or implicit needs** of a user (ISO 9001)



INRAO

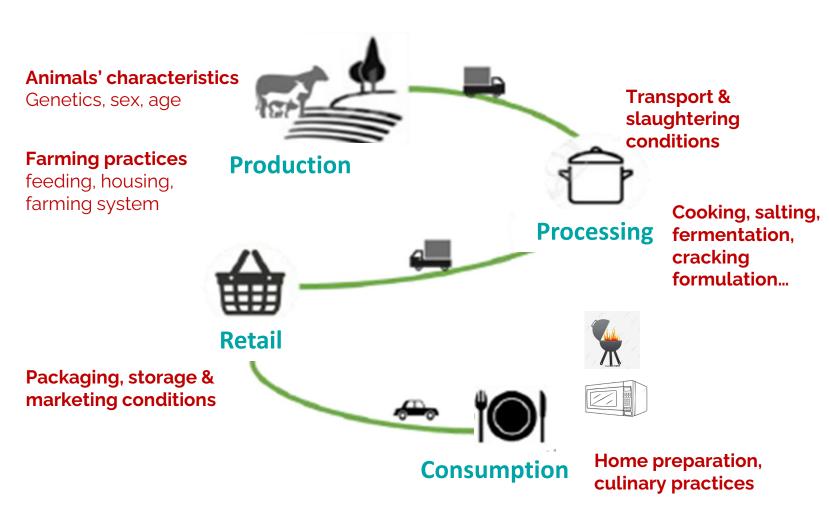
> Animal-source foods: which attributes, needs, users, variation factors?

> The quality attributes of animal-source foods

Collective scientific assessment (INRAE)

INRAe

Producers, processing actors


Consumers

Contribute to

Prache et al., 2022

p. 3

Quality along the value chain

- Quality is built but can be impaired at all steps from farm to fork
- Some antagonisms but also synergies can be found between steps, and between quality attributes

Prache et al., 2022 Lebret & Candek-Potokar, 2022 a. b

Some major factors and steps

Quality attributes Stages Factors Commercial Technological Safety Nutritional Convenience Sensory Image Health and nutrition of the mother Animal characteristics Genetics, breed, strain Gender Physiological stage (milk) Age/weight of the animal Geographic location (local region, Farming peri-urban, etc.) practices Animal habitat Hygiene Welfare, mutilation, castration Stocking density Feeds and diets Medication (antibiotics) Harvesting, transport Transport and Pre-slaughter, slaughter (meat, fish slaughter flesh) Conservation method Processing of Fractionation/cracking the raw material Cooking process routes Salting, smoking, fermentation Formulation (including additives) Packing and portioning Distribution Sale and retail Storage (Conservation method) Culinary Cooking process routes practices

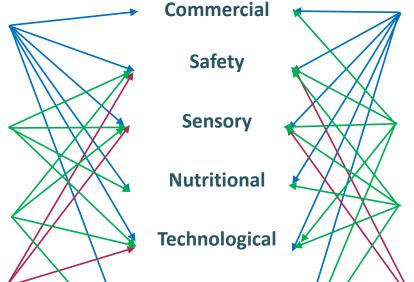
1 factor: many attributes

> Examples of synergies between production and processing conditions

Quality attributes

1 - Main processing steps and associated quality attributes of specific products

PDO dry-cured ham


Raw ham: pig breed & rearing conditions; weight, backfat thickness, pH...

Salting: *method, duration, brine composition* **Resting - equalizing**

Drying - RipeningDuration, temperature, fat coating

Convenience

Image

Farm cheese made from raw milk

Breed / dairy cows feeding (hay/grazing natural grasslands, low levels of silage and concentrate)

Milking – milk collection (hygiene, no transport or mixing)

Processing and **maturation** *Traditional methods*

Packaging
Whole piece or portions

- Quality attributes of the final products depend on multiple factors
- Result from the characteristics of the **raw material** (breed, farming conditions) **and the processing conditions**, including the know-how of the actors

> Examples of synergies between production and processing conditions

2 - Rearing factors and characteristics of the raw material

Dry-cured ham

Ham weight

Visual/appearance defects

Thickness of subcutaneous fat

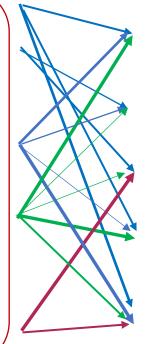
Lipid content, Fatty acid (FA) composition, micro-constituents

Meat ultimate pH

Factors of variation

Genotype/breed

Animal health


Pig sex

Age-weight at slaughter / lactation stage

Feeding

Housing-farming system

Slaughtering and carcass refrigeration / milking, collection & storage of milk

Farm cheese

Protein and fat contents

Proteolysis and lipolysis

Microflora of raw milk

FA composition, micro-constituents

Coagulation ability / acidification

Flavour

- Fat: breed and production factors
- Drying and ripening conditions & duration: lipolysis → FA oxidation, volatile compounds → flavour

Colour and texture

- Cow farming conditions
- Processing and maturation conditions and duration: micro-constituents → colour; fat melting point → texture

> Synergies between production and processing conditions

- Synergies between production and processing factors → progressive development of typicity
- The relative importance of animal characteristics, farming practices and food processing conditions depends on the quality attribute and the product considered
- Interactions between factors lead to increased quality variability
- This variability can be a lever to differentiate animal-source foods within a production system or pre-established specifications (Geographical Indications; organic)

Lebret & Martin, 2020 Prache et al., 2022 Lebret & Candek-Potokar, 2022 b

Objectives: improve sensory and nutritional attributes and societal image (feed resources; environmental impacts) by combining pig genotype and feeding strategies

- → improve the quality and sustainability of pork
 - **Two pig genotypes Duroc, D**: high sensory quality
 - Piétrain, P : standard
 - Two feeding regimens ≠ origin and nature of protein and fat resources
 - Roc+, R: extruded faba beans & linseed, french origin
 - Control, C: oilseed meal (incl. imported soybean)

4 experimental groups (n=15 female pigs/group): DR, DC, PR, PC

- ✓ Experimental pigs : 30 to 115 kg (slaughter), individual pen
- ✓ Ad libitum feeding, Dlysine:net energy adjusted weekly for each group
- ✓ Growth performance and carcass composition
- ✓ Loin and ham muscles quality traits and biochemical composition
- ✓ Loin sensory analysis (trained panel)
- ✓ Economic indicators
- ✓ Quantification of inputs & outputs and evaluation of the environmental impacts by Life-Cycle Analysis (LCA) using individual data

Lebret et al., 2023 Gagaoua et al., 2023, 2024

Commercial, Technological,
Sensory, Nutritional, and
Image attributes

Results

	DR	DC	PR	PC				
Growth traits and Commercial attributes								
Average daily gain, g	989	898	1052	1002	G***, F**			
Feed efficiency	0.34	0.33	0.38	0.37	G***, F*			
Carcass weight, kg	89.4	82.2	96.7	93.8	G***, F***			
Lean Meat Content,%	60.2	60.5	61.9	61.5	G**			
Technological attributes (loin)								
pH 24 h	5.94	5.89	5.80	5.83	G*			
Drip loss, %	3.2	3.7	4.7	4.7	G**			

> D vs P pigs

☑ growth performance and carcass leanness↗ technological quality in loin and ham (data not shown)

> R vs C feeding

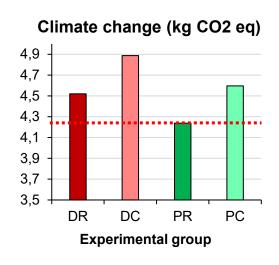
→ growth performance

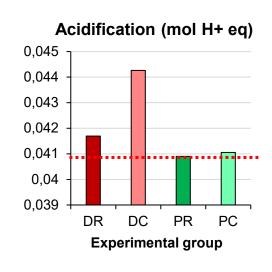
Effects of Genotype (G) and Feeding (F) ***: P<0.001; **: P<0.05

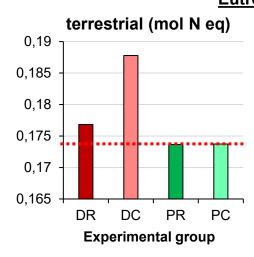
	DR	DC	PR	PC				
Nutritional attributes (loin)								
Fatty acid profile C18:2 n-6: C18:3 n-3	6.3	20.6	7.9	21.8	G***, F*** G x F t			
Sensory attributes of loin (intensity, 0-10)								
Appearance: Marbling	3.8	3.3	2.6	2.7	G***			
Tenderness	6.2	6.1	5.4	5.3	G***			
Juiciness	5.4	5.6	5.2	5.2	G**			
Flavour	5.6	5.7	5.7	5.8	G*			
Economic evaluation								
Added value (output - feed cost)/kg carcass, €	1.22	1.17	1.32	1.31	G***, F t			
Added value (output - feed cost)/pig, €	107.2	94.2	124.5	120.3	G***, F** G x F t			

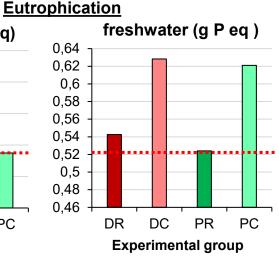
> D vs P pigs

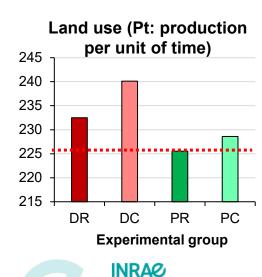
✓ sensory and nutritional quality✓ added value, especially DR pigs

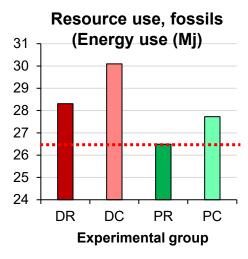

> R vs C feeding

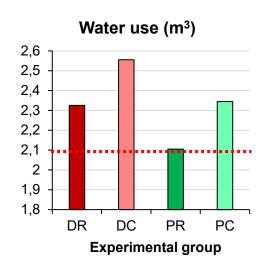

✓ nutritional attributes, esp. DR✓ added value per pig, esp. PR


Effects of Genotype (G) and Feeding (F) ***: P<0.001; **: P<0.01; *: P<0.05; t: P<0.10



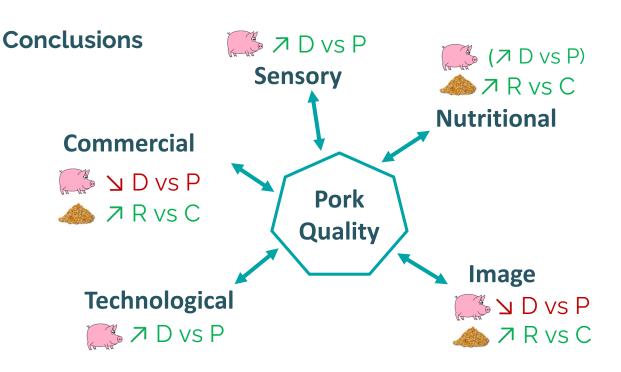

Environmental impacts of pig production (at farm gate, per kg of live weight)





Gagaoua et al., 2024

D vs P pigs


→ for all major impact categories (mainly due to lower feed efficiency)

R vs C feeding strategy

lowest impacts for the PR pigs (origin of feed resources)

p. 12

Gagaoua et al., 2024

- Combining D pigs and R feeding strategy
 ++ for many quality attributes but greater
 environmental impacts and lower added value
- ✓ R feeding strategy
 ++ to reduce environmental impacts especially in efficient growing pigs

- Combining genetics and relocation of feed resources: win-win strategy towards more sustainable production of quality pork – but still room for improvements
- > Synergies but also antagonisms between quality attributes
- > Needs for **multidimensional analyses** to **characterize trade-offs** between quality attributes

> Farming practices in organic systems and quality attributes - Pork

Organic farming

- Principles (EU regulations 2018): practices that respect the **environment**, **health and animal welfare**
- > Organic pigs: better to avoid surgical castration of males, but risks for

- agonistic behaviours (mounting, agressions)
- pork boar taint: undesirable odours or flavours, mainly due to

- androstenone : mostly genetic effects
- **skatole**: mostly **feeding** and **husbandry conditions**

Feeding strategy for non-castrated males in organic farming to improve various quality attibutes

Comparison of the effects of two feeding strategies for organic non castrated pigs (Piétrain crossbreeds)

- **control** (=organic specifications) (n=37)
- Bio+: local raw materials, rich in fibres (faba bean; forages) and omega-3 fatty acids (n=40)

on growth and carcass traits, technological, nutritional, sensory and image quality attributes of pork

> Farming practices in organic systems and quality attributes - Pork

Positive effect Negative effect

Loin & ham colour

Lightness Bio+ < C

Boar taint compounds in backfat

Androstenone Bio+ ≥ C Skatole Bio+ < C

Sensory analyses of loin (trained panel)

Red colour Bio+ > C

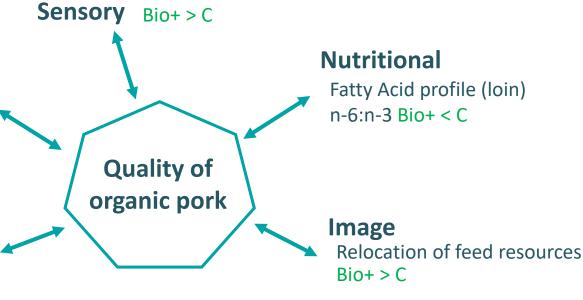
Marbling

Tendreness, juiciness

Odour, Flavour

Aromatic persistence

No boar taint for Bio+ or C pork

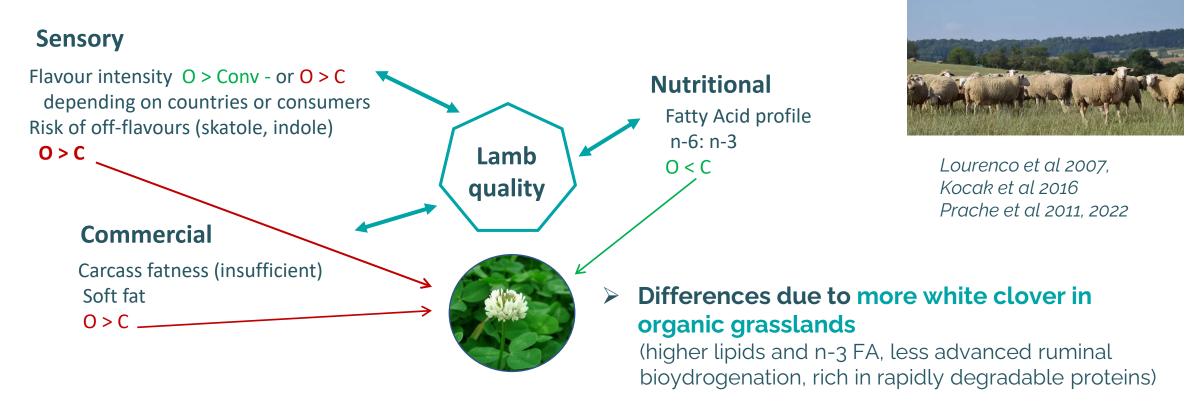

Commercial

Growth performance
Carcass weight and lean
meat content

Bio+ \cong C

Technological

pH 24 h of loin and ham Bio+ > C

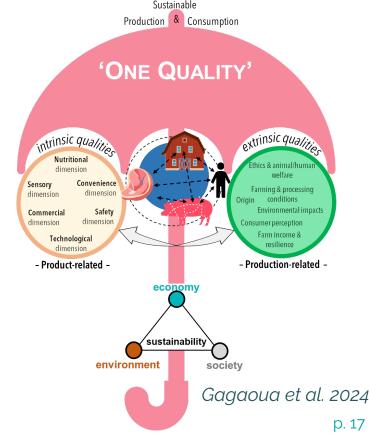

INRAe

Within specifications of organic farming, feeding for non-castrated male pigs is a lever to jointly improve various quality attributes

> Farming practices in organic systems and quality attributes - Lamb

Organic (O) vs conventional (C) farming on carcass and meat quality in pasture-fed lambs

Positive effect - Negative effect


> Solutions: supplement with condensed tannins to reduce the risks of off-flavours

INRAe

Conclusions and Perspectives

Quality of animal-source foods

- Many attributes, both product-related (intrinsic) and production/processing-related (extrinsic)
- Results from various and interconnected factors along the value chain from farm to fork
- Synergies but also antagonsims between quality attributes
- > Better characterize the synergies and antagonisms between the multiple quality attributes by multidimensional analyses to allow **stakeholders**, including **consumers** to make informed choices according to their quality priorities
- = Integrated approach: One Quality combining quality and sustainability dimensions

INRAO

Thank you for your attention!

benedicte.lebret@inrae.fr

INRAO