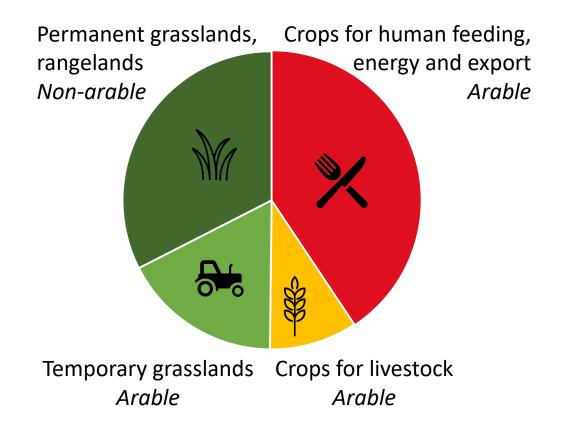


Land use efficiency to protein production of French dairy cattle contrasted in their feeding systems

M. Allix^{1,2}, B. Rouillé², R. Baumont¹

¹INRAE, UMR Herbivores, 63122 Saint-Genès-Champanelle, France, ²Idele, Monvoisin, 35650 Le Rheu, France


rene.baumont@inrae.fr

> Introduction

- In a context of limited resources, ruminant production raises the question of efficient land use, as a component of environmental sustainability
- Indeed, in France livestock uses 56% of the agricultural area
 - but 55% of this area are permanent grasslands, that are for a large part non-arable and contribute to C storage, biodiversity, quality products and landscape
- The aim of this study was to evaluate the land use efficiency for protein production of French dairy cattle systems differing in their feeding systems (maize vs grasslands)

Agricultural land utilisation in France, 2020

Assessing land use efficiency

Common metric to assess
land use efficiency:
area used / kg animal source food

26 - 54 m² .kg⁻¹ milk

 $37 - 2100 \text{ m}^2 \text{.kg}^{-1} \text{ meat}$

Nijdam et al., 2012

Land Use Ratio:

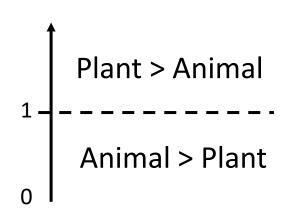
potential of plant production /
animal production on the same land
(Van Zanten et al., 2016; Hennessy et al., 2021)

No reference in France

Application at the farming system level

Land use ratio

$$LUR = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} (LO_{ij} \times HDP_{j})}{HDP \ of \ 1 \ kg \ of \ ASF}$$


LO: Land area Occupied

HDP: Human digestible protein

ASF: Animal source Food

 \boldsymbol{i} : feed ingredient

j : type of land used

type of land classification

LO_{na_f}
Non-Arable area on Farm

MW

Permanent grasslands

LO_{a_f}

Arable area

on Farm

Crops

forages

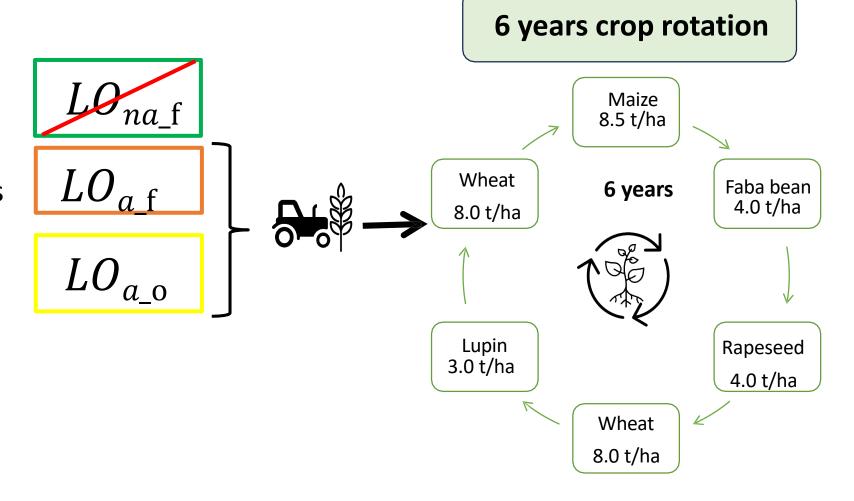
Temporary

 ${\sf grasslands}$

LO_{a_o}
Arable area
Outside the farm

Crops

Land use ratio: potential plant production



Production scenarios toward agroecology (Wezel et al., 2020)

Long crop rotations

Cereals & legumes

Low inputs

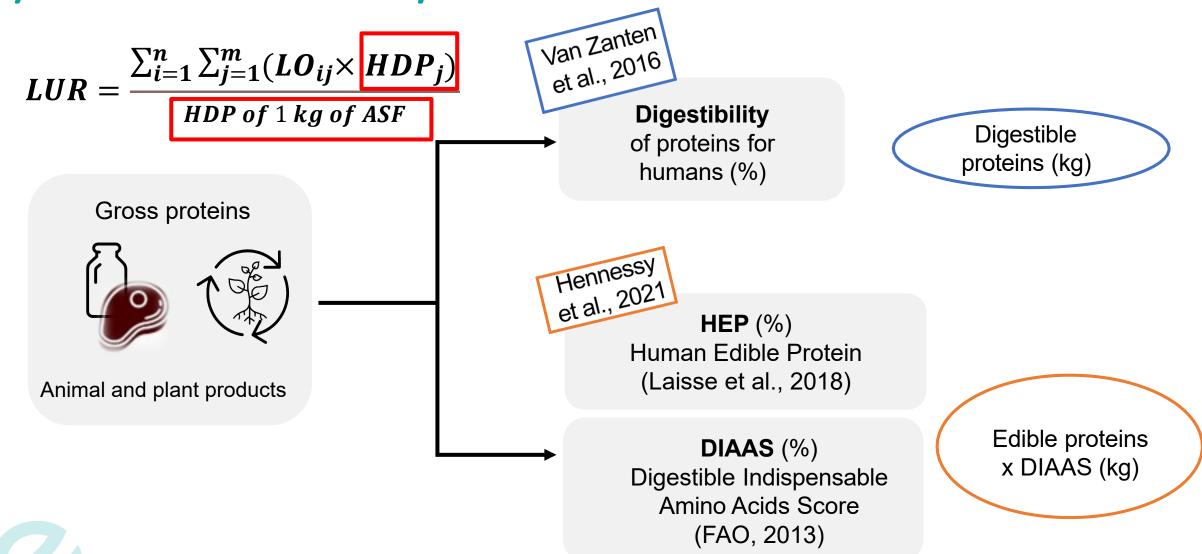
Land use ratio: animal protein production

$$LUR = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} (LO_{ij} \times HDP_{j})}{HDP \ of \ 1 \ kg \ of \ ASF}$$

protein for human / kg animal product

Milk

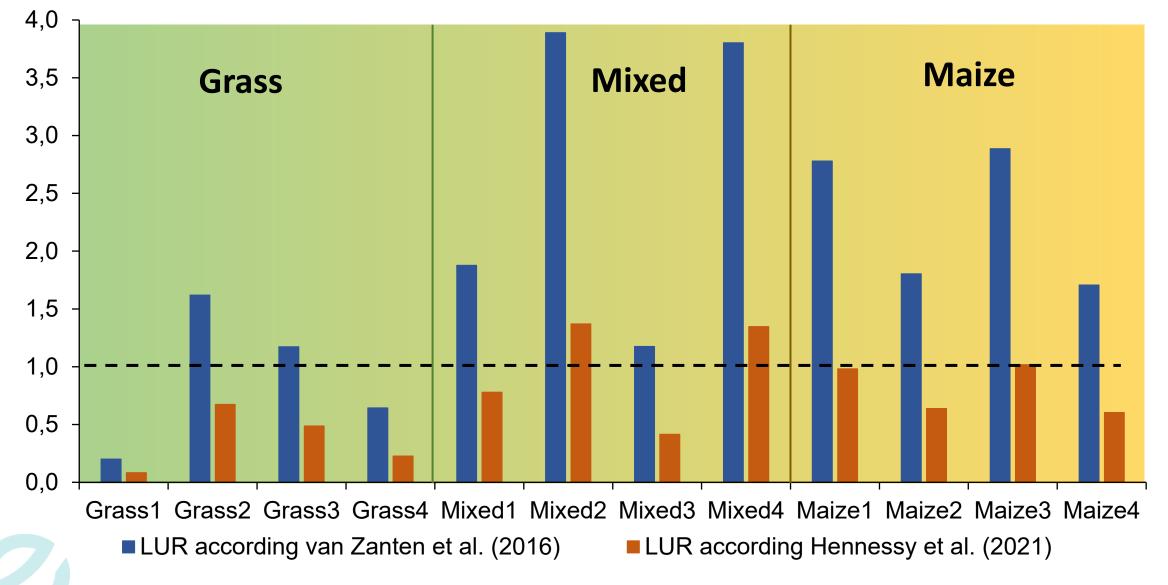
From the data at the farm level


- Sold milk (kg)
- Milk protein content (g/kg milk)

Meat

- Meat produced (kg)
 - Carcass yield
 - Meat yield
- Protein content (g/kg)

Land use ratio: 2 ways of expressing the quality of plant and animal protein



> Application to 12 dairy farms case-studies

	Grass-based (n=4)	Mixed (n=4)	Maize-based (n=4)-
Feeding system	> 80% grass	< 80% grass	< 60% grass
	0% maize	10-20% maize	> 20% maize
Total land used for animal production (ha)	75.6 ± 13.6	75.2 ± 25.9	94.2 ± 28.4
Milk production (kg cow ⁻¹ y ⁻¹)	5618 ± 674	6412 ± 731	8086 ± 1313
Non-arable land used (%)	66.3 ± 27.6	21.8 ± 32.9	20.1 ± 14.5
Land used to produce animal protein	78.6 ± 13.6	53.0 ± 11.4	33.6 ± 5.4
(m ² kg ⁻¹)	70.0 ± 13.6	55.0 ± 11.4	33.0 ± 5.4
Digestible animal protein produced	126.6 ± 28.5	184.4 ± 33.5	287.9 ± 42.5
(kg ha ⁻¹)	120.0 ± 28.5	104.4 I 33.5	207.9 ± 42.5
Potential digestible plant protein			
produced	108.1 ± 65.6	509.0 ± 306.3	643.9 ± 116.6
(kg ha ⁻¹)			
Edible animal protein produced	452.0	224.2	250.4
× DIAAS (kg ha ⁻¹)	153.8 ± 34.7	224.2 ± 40.5	350.1 ± 51.2
Potential edible plant protein produced	F4.4	222 5	276.6
× DIAAS (kg ha ⁻¹)	51.1 ± 32.9	223.5 ± 126.5	276.6 ± 50.1

LUR varies with the feeding system and the way of expressing the quality of proteins

Discussion and conclusion

- Although the LUR calculations rank the systems in the same order, the results highly depend on
 - the non-arable feature of permanent grasslands
 - the potential level of plant production on the land used for protein or other nutrients
 - the way the relative nutritional quality between animal and plant products is assessed
- Grass-based ruminant systems can be an efficient utilization of land for protein production for humans, in particular when they use non-arable grasslands
- Metrics to assess land-use efficiency need to be further investigated to be generalized to the diversity of animal production systems

Acknowledgment for the financial support https://www.gis-avenir-elevages.org/

