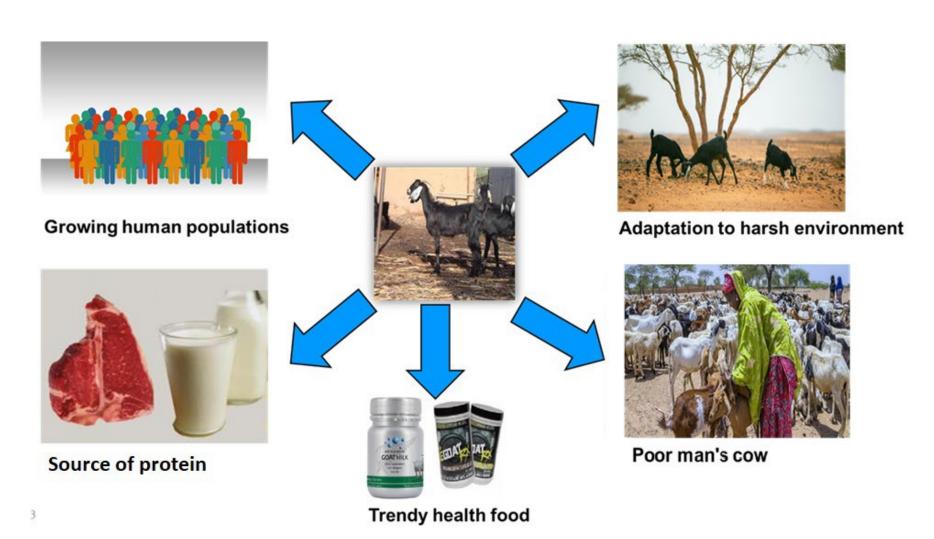


Unravelling the genetic diversity among Nubian, Anglo-Nubian, and Old English goat breeds


<u>Siham A. Rahmatalla</u>^{1,2}, G.B. Neumann^{1,3}, P. Korkuć¹, D. Arends⁴, G. M. Tarekegn⁵, S. Gaouar⁶, H. Abdel-shafy⁷, J. Conington⁵, M. Reissmann¹, M. K. Nassar⁷, and G. A. Brockmann¹

¹Humboldt-Universität zu Berlin, ²Khartoum University, ³Leibniz Institute for Zoo and Wildlife Research, ⁴Northumbria University, ⁵SRUC Scotland's Rural College, ⁶Tlemcen University, ⁷Cairo University siham.rahmatalla@hu-berlin.de

Importance of goats

Introduction

Nubian, Anglo-Nubian, and Old English goats

Nubian goats¹

- Widespread across Algeria, Egypt, Sudan, Eritrea, and Ethiopia
- Milk and meat production
- Adapted to arid environment

Anglo-Nubian goats

- British breed
- Developed during 19th century from cross-breeding
 Old English with Nubian from Africa and Jamunapari goats
 from India²
- Exported to many parts of the world and is now found in more than sixty countries³
- Dairy or dual-purpose breed

Old English goats

- Native British breed
- Milk production

Nubian

Anglo Nubian

Old English

Introduction Goals

- 1) Assess **genetic diversity** and **genomic inbreeding** in Nubian goats compared to other goat breeds
- 2) Evaluate **genetic relationship across** different Nubian populations and to other goat populations
- Identify genomic regions undergoing positive selection in Nubian, Anglo-Nubian, and Old English goats

Material & Methods Animals and SNP chip data

- Genotypic data of 2523 goats from 61 populations
 - Axiom Caprine 60K SNP chip
 - Illumina Goat SNP 52K chip from AdaptMap¹, collaborators^{2,3}, and own genotyping⁴

Breed	Country	No.	
Nubian	Algeria	88	
Nubian	Argentina	15	
Nubian	Egypt	150	
Nubian	Ethiopia	70	
Nubian	Sudan	177	
Anglo-Nubian	United Kingdom	29	
Old English	United Kingdom	54	
Old English	Ireland	31	

500

¹ Stella et al. (2018). Genetics Selection Evolution **50**, 61.

²Tarekegn *et al.* (2021). *Evolutionary Applications*. **14**, 1716–1731.

³ Robert Onzima. *Animal Genetics* **49**, 59-70.

⁴Rahmatalla et al. (2017). *BMC Genetics*. **18**, 92.

Material & Methods

Data quality control and diversity analyses

Diversity analyses

•Minor allele frequency (MAF)

Observed (H_O) and expected heterozygosity (H_E)

•Nucleotide diversity (π)

Inbreeding as Excess of homozygosity (F_{Hom})

VCFtools

VCFtools

10 kb windows using VCFtools

VCFtools

Genetic differentiation

Pairwise genetic differentiation (F_{ST})

Principal component analysis (PCA)

Hudson's method¹ using VCF tools

scikit-allel package

Signature of selection

•Run of homozygosity islands (RoH islands)

Gene annotation

plink v1.90; top 0.01 percentile of frequencies as threshold

genes within ± 0.1 Mb from RoH islands

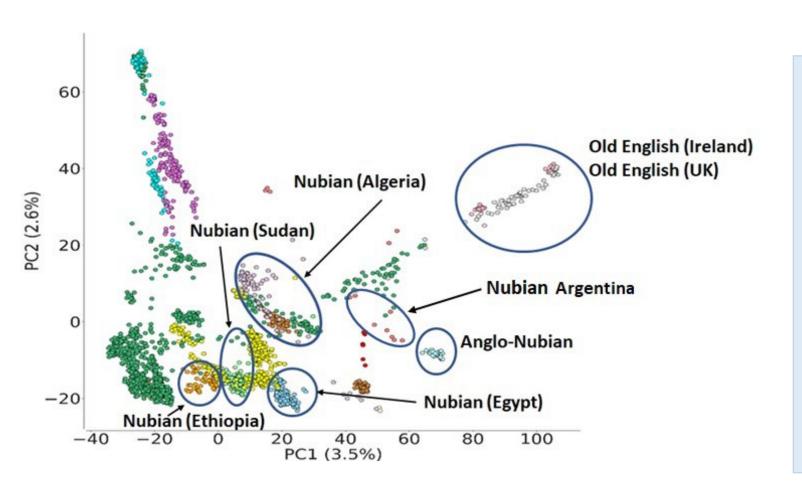
Genetic diversity & inbreeding within goat breeds

Population	No.	SNPs	MAF (%)	H _o (%)	H _E (%)	Nucelotide diversity (%)	F _{Hom} (%)
Nubian (Algeria)	88	46056	32.21	40.39	41.18	7.55x 10 ⁻⁴	7.69
Nubian (Argentina)	15	47561	31.83	39.41	42.05	8.11 x 10 ⁻⁴	10.78
Nubian (Egypt)	150	47264	28.62	36.01	37.46	7.11x 10 ⁻⁴	18.08
Nubian (Ethiopia)	70	47478	30.04	38.42	39.21	7.53x 10 ⁻⁴	12.72
Nubian (Sudan)	177	46399	30.32	38.44	39.06	7.23x 10 ⁻⁴	11.95
AngloNubian (UK)	29	46473	21.00	33.86	33.52	5.33x 10 ⁻⁴	33.91
OldEnglish (Ireland)	31	47390	24.16	26.98	36.15	6.15x 10 ⁻⁴	45.17
OldEnglish (UK)	54	46707	25.71	35.41	35.12	6.48x 10 ⁻⁴	20.41

In Nubian populations:

- Nubian (Algeria) have highest genetic diversity (highest MAF and H_O, lowest F_{Hom})
- Nubian (Argentina) have highest nucleotide diversity
- Nubian (Egypt) have lowest genetic diversity (lowest MAF and H_O, highest F_{Hom}), and lowest nucleotide diversity
- Anglo-Nubian (UK) have lowest MAF and nucleotide diversity across all breeds
- Old English (Ireland) have lowest H_O and highest inbreeding (F_{Hom}) among all breeds

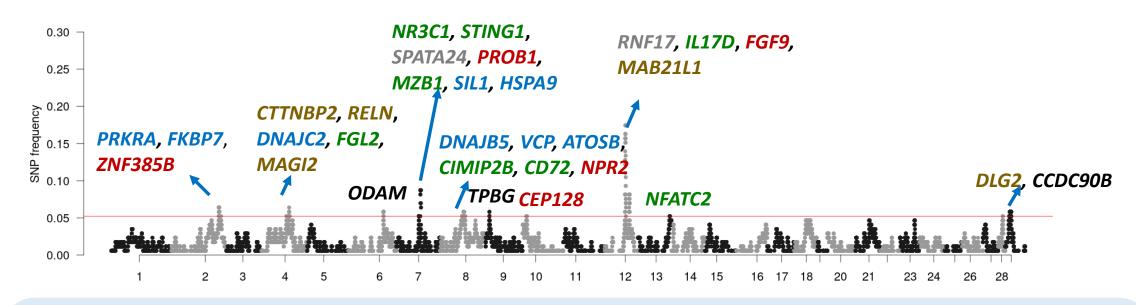
Estimated pairwise fixation index (F_{ST})


Populations	Nubian (Argentina)	Nubian (Egypt)	Nubian (Ethiopia)	Nubian (Sudan)	Anglo-Nubian (UK)	OldEnglish (Ireland)	OldEnglish (UK)
Nubian (Algeria)	0.05	0.06	0.03	0.03	0.16	0.16	0.14
Nubian (Argentina)		0.10	0.08	0.08	0.14	0.16	0.14
Nubian (Egypt)			0.06	0.05	0.18	0.20	0.18
Nubian (Ethiopia)				0.01	0.18	0.18	0.17
Nubian (Sudan)					0.16	0.18	0.16
AngloNubian (UK)						0.25	0.21
OldEnglish (Ireland)							0.08

- Nubian populations (African countries) were closely related (F_{ST} values ranges between 0.01 to 0.06)
- Anglo-Nubian goats exhibit a high genetic distance compared to other populations
- Old English (Ireland) goats are tightly related to their counterparts in UK

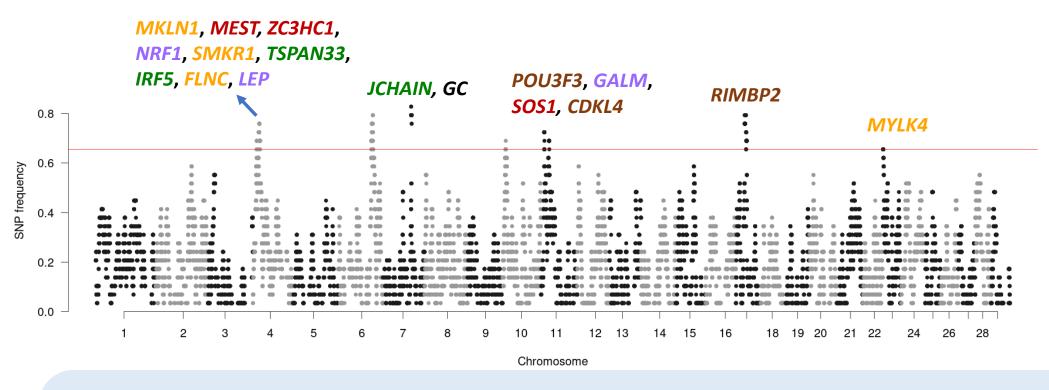
Results

Relationship between populations- PCA



- Nubian (Egypt, Ethiopia, Sudan)
 each form distinct clusters (near
 Northern African populations)
- Nubian (Algeria) form dispersed cluster (near Eastern, Northern, and Southern African populations)
- Old English (Ireland, UK) are closely clustered
- Anglo-Nubian form a unique cluster between Old English, African and middle east goats

Signature selection (RoH islands) - Nubian Sudan



- PRKRA, FKBP7, DNAJB5, VCP, ATOSB, DNAJC2, SIL1, HSPA9:
- ZNF385B, PROB1, NPR2, FGF9:
- FGL2, NR3C1, MZB1, CIMIP2B, CD72, IL17D, NFATC2:
- SPATA24, RNF17 :
- CTTNBP2, RELN, MAGI2, MAB21L1, DLG2:

cellular heat stress responses and radiation bone growth and cell proliferation immune response (disease resistance) spermatogenesis and reproduction neurological functions and nervous system

Signature selection (RoH islands) - Anglo-Nubian

- MKLN1, SMKR1, FLNC, MYLK4 :
- *MEST, ZC3HC1, SOS1*:
- TSPAN33, IRF5, JCHAIN:
- GC:
- POU3F3, CDKL4, RIMBP2:
- NRF1, LEP, GALM.

muscle development, structure (meat quality)

growth and development

immune response (disease resistance)

transport of Vit. D (skeletal strength, milk production)

neurological functions and nervous system

energy balance and metabolism (milk and meat production)

Conclusion

Nubian populations:

- Nubian (Algeria) goats have the highest genetic diversity and lowest inbreeding
- Nubian (Egypt) have the lowest genetic diversity and highest inbreeding
- Nubian (Sudan) have genes related heat stress response and immune function, which reflects their high adaptability to harsh environments
- Nubian goat populations in African countries are genetically similar

Anglo-Nubian:

- Anglo-Nubian show a high genetic distance with other populations
- Anglo-Nubian form a distinct cluster between Old English, African, and Middle Eastern goats
- In Anglo-Nubian goats, key genes were found for muscle development, vitamin D transport, and energy regulation highlight their effectiveness as a dual-purpose breed

Old English:

Among all breeds, Old English (Ireland) have the lowest genetic diversity and highest inbreeding

Thank you for your attention!

Humboldt-Universität zu Berlin

Gudrun Brockmann

Guilherme B. Neumann

Paula Korkuć

Danny Arends

Monika Reißmann

Amira Warda

SRUC Scotland's Rural College

Joanne Conington

Getinet Tarekegn

Old English breed Association

Adam Short

Tlemcen University

Semir Gaouar

Cairo University

Hamdy Abdel-Shafy

Mostafa Nassar

