Evolution of genetic parameters of production traits and conception rate in the Dutch Holstein population

Jeremie Vandenplas, Yvonne Wientjes, Piter Bijma, Matias Schrauf, Mathijs van Pelt

RUMIGEN PARTNERS

www.rumigen.eu

Evolution of genetic variances

- Evolution of genetic variances: 2 processes under artificial selection
 - Reduction due to drift
 - Independent of selection
 - Only due to demographic factors
 - Reduction due to selection
 - Bulmer effect
 - (pre)selection
- Impact on genetic gain

Aim

To evaluate the evolution of genetic variances, covariances and correlations for milk production traits and conception rate in the Dutch Holstein population since 1990

Data

- Phenotypes
 - Period: 1990-2020
 - First-parity cows
 - 305-DIM milk, fat & protein yields (855,185 records)
 - Conception rate (0/1) at first insemination (676,641 records)
- Pedigree
 - Extracted up to 1970

Bivariate models

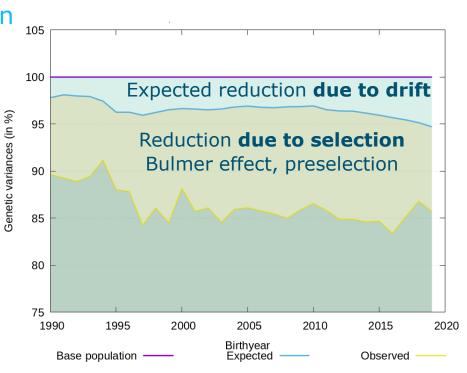
- 305-DIM yields
 - Fixed: Herd x year of calving, Age at calving, Year x season of calving
 - Random: Animal, Residual
 - Pre-corrected for heterogenous residual variances (by herd x year of calving)
- Conception rate
 - Fixed: Herd x year of calving, Year x month, Day of the week,
 Age of bull, Sexed semen
 - Random: Service sire, Animal, Residual

Estimation of genetic parameters – approach

- Gibbs sampling approach
 - Following Macedo et al. (2021) & extended to bivariate models
 - gibbsf90+
 - 150,000 iterations
 - 900 samples of EBVs (stored each 150 iterations)

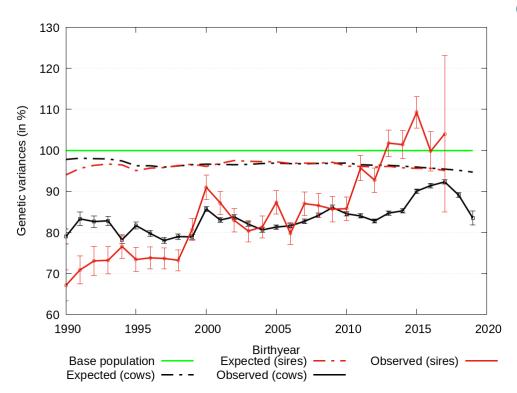
- 30 groups of cows with records born between 1990 and 2019
- 28 groups of sires born between 1990 and 2017

Estimation of genetic parameters – approach


Genetic variance in the base population $(\hat{\sigma}_a^2)$

For each group (sex x birthyear)

Expected genetic variance


•
$$\hat{\mathbf{E}}(\sigma_{a(b,s)}^2) = \hat{\sigma}_a^2 (1 + \overline{F}_{(b,s)} - \overline{\mathbf{A}}_{(b,s)})$$

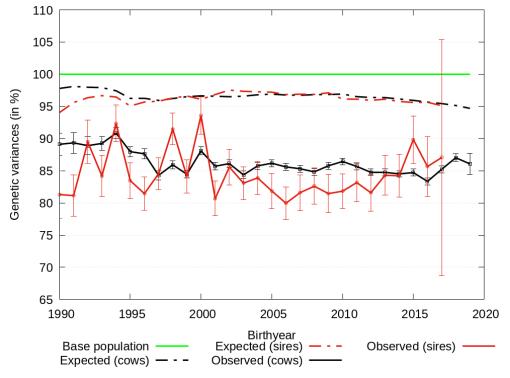
- Observed genetic variance
 - $\hat{\sigma}_{a(b,s)}^2$ = Average variance of within-group BVs

305-DIM Milk yield – Genetic variances

Observed genetic variances

• Compared with base population

Cows


- 1990: 21% lower
- From 1990: average increase of 0.3% per year

Sires

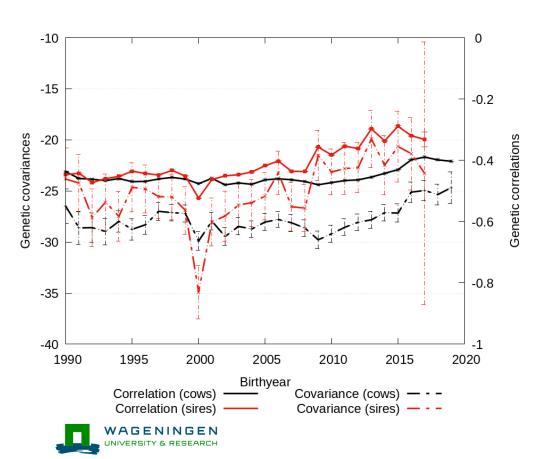
- 1990: 33% lower
- From 1990: average increase of 1.2% per year
- From 2013: larger than base population,

Conception rate – Genetic variances

Observed genetic variances

Compared with base population

Cows


- 1990: 11% lower
- From 1990: average decrease of 0.1% per year

Sires

- 1990: 19% lower
- From 1990: average decrease of 0.1% per year

MY & CR - Genetic covariances & correlations

- Until 2008-2010
 - Rather stable
- From 2008-2010
 - Increasingly less unfavourable
 - Sires: More pronounced

Conclusions

- Observed genetic variances
 - Lower than base population (except for MY and sires>2012)
 - Evolution
 - Conception rate: limited decrease
 - Milk yield: increase (especially for sire groups)
 - Potentially due to changes in breeding goals
- Observed genetic correlations: increasingly less unfavourable!

Similar results for 305-DIM fat and protein yields

RUMIGEN PARTNERS

Thank you for your attention

www.rumigen.eu

