

Estimated output from assisted reproductive techniques (OPU/IVF) in Holstein cattle associated with the genetic background

F. Guillaume¹, S. Brard-Fudulea², B. Desnoues², H. Grothmann³, S. Meier³

¹SYNETICS France SAS, Noyal-Sur-Vilaine, ²SYSAAF, Nouzilly ³SYNETICS Germany GmbH, Verden (Aller)

Session 41. Optimising reproductive physiology of livestock

75th EAAP Annual Meeting, Florence – Italy, 2024-09-02

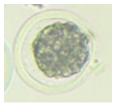
Introduction

- Reproduction technologies are a central element of breeding scheme efficiency.
- Since 2015 gEBV (and candidate gene information) are used within our breeding scheme to assess MOET productivity of donors.
- Over the last years, OPU/IFV became the predominant reproduction technology.
- Objective: Assess the genetic contribution to productivity in order to adapt consequently the breeding scheme decision and improve our production process.

Material & Methods

Data

- SYNETICS donor stud Nückel, Northwest Germany
- OPU/IVF results from April 2018 August 2023
- 9,099 sessions performed
- 1,596 Holstein donors originating from 254 farms
- 336 different sires of sons used for fertilization


Model building

#Oocytes #Viable Embryo

Sire effects

- Phenotypes
 - Number of oocytes, number of viable embryos, development rate
 - Transformation of the traits or not?
- Effects taken into account
 - Season, Year, Age Group, OPU Rank, Day of production, Semen sexed or not, HH1 risk mating, Donor, Sire of embryo...
 - Type of the effect fix, Random, genetic?
- Model
 - Linear model
 - Threshold model

Assess the model that best fit data at hand while being sound

Results 1: Model

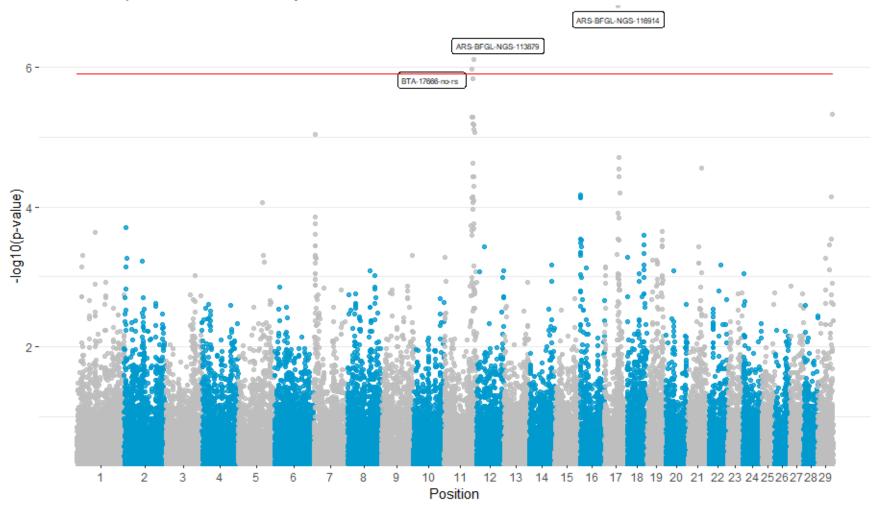
Final models

```
\#00cyte = \mu + year + season + age\ group + env_{perm} + animal + day + OPU\ rank \#Viable\ Embryo = \mu + year + season + age\ group + env_{perm} + animal + day + embryo\ sire + semen\ type Devpt\ Rate = \mu + year + season + age\ group + env_{perm} + animal + day + embryo\ sire + semen\ type + NRH_{GEBV}
```

- Similar effects retained within traits, among which donor's genetic effects
- Expected effect of the semen for traits related to embryo
- Some effects needing more investigations

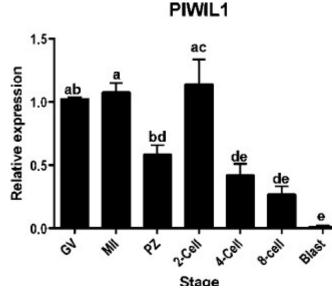
Results 2: Genetic parameters

Highest estimates of genetic parameters :


	Number of oocytes	Viable embryos	Development rate
Data transformation	Anscombe	None	None
heritability	0.24	0.13	0.09
repeatability	0.36	0.20	0.13

- → Simpler traits lead to more satisfactory results
- →Additionnal data may be needed to handle more complex traits (or transformed one)
- → Heritability remain promising owing to the control environment of donors barn
- → Despite these caveats gEBV can be obtained for candidate to donors station (predictive ability ranging from 0,27-0,14)

Results 3: First insight from GWAS


Manhattan plot of Number of Oocytes

Results 4: First insight from GWAS

- PPP6C (BTA11): Protein Phosphatase 6 Protects Prophase I-Arrested Oocytes by Safeguarding Genomic Integrity (Hu et al., 2016)
- ANGPTL2 (BTA11): Aberrant expression of angiopoietin-like proteins 1 and 2 in cumulus cells is potentially associated with impaired oocyte developmental competence in polycystic ovary syndrome (Liu et al., 2016)
- ADGRD1 (BTA17): Control of oviductal fluid flow by the G-protein coupled receptor Adgrd1 is essential for murine embryo transit (Bianchi et al., 2021)
- PIWIL1 (BTA17): Production of functional oocytes requires maternally expressed PIWI genes and piRNAs in golden hamsters (Hasuwa et al., 2021)
- → Additional data, models adaptation and sequence data will help to refine genetic architecture behind these QTL

PIWIL1 expression during oocyte maturation and embryogenesis.(Russel *et al.*,2016)

Conclusion and perspectives


A First promising work on OPU/IFV

- Simpler traits (Number of oocyte) already offer interesting results
- Continuous data collection will improve our understanding of key gene in the OPU/IVF production by use of finer model
- In house gEBV are already available for some first test

2 QTL found on BTA17 and BTA11

- Literature review identify candidate gene
- Additional investigations will allow to refine the list of candidate gene

The Perfect Fit SYNETICS

