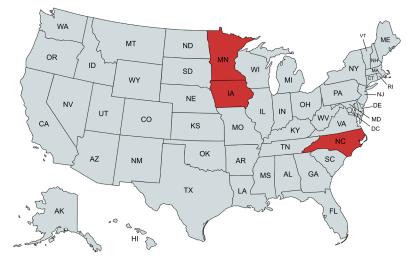
Smithfield. Premium Genetics


Genomics of boar semen quality traits in U.S. Large White and Duroc breeds

M. Terribile¹, <u>G. Visentin</u>¹, A. Costa¹, D. Bucci¹, Y. Huang², J. Jiang³, F. Tiezzi⁴, C. Maltecca^{3,4}

¹DIMEVET – UNIBO, Italy; ²Smithfield Premium Genetics, USA; ³Department of Animal Science – NCSU, USA; ⁴DAGRI – UNIFI, Italy

Introduction

 Pig meat sector is US major source of income in livestock sector (worth 178 billion \$ in 2021)

- Production system shifting from farrow-to-finish to greater specialization (feeder pig producers and feeder pig finishers)
- **Decreasing trend** in farm number (-70% since 1990) while **increasing** farm size (61% of farms rear 5000+ heads)
- In 2021, 70 millions heads in 60,000 farms, with total meat production of 12.5 million tons (23 kg consumption/capita)

Introduction

- Profitability is driven by excellent productive and reproductive efficiency, which are commonly included in breeding objectives
- Small attention placed in **semen quality traits selection**, yet economically advantageous coupled with AI technologies (Gonzalez-Pena et al., 2016)

- Estimate genomic parameters (heritability, genomic correlations) of semen quality traits in Duroc and Large White US boars, and
- Perform a GWAS to identify genomic regions associated to these charateristics

Material and Methods

- 4,921 semen doses, analysed with CASA, from 1,638 Large White and Duroc boars selected from the cores of Smithfield Premium Genetics
- Boar age at semen collection 7 to 34 mo, from 2013 to 2023
- 813 boars genotyped with DNA chips of different density (48K, 50K, 60K, 80K)

Only SNP common to all 4 panels, mapped in Sus scrofa reference genome (v. 11.1), in authosomes were retained (n = 29,021). A total of 27,350 SNP passed QC (SNP and individual call rate, MAF, and deviation from HW equilibrium)

Material and Methods

 Genomic parameters estimated with BLUPF90+ (Misztal et al., 2002) according the following linear mixed model:

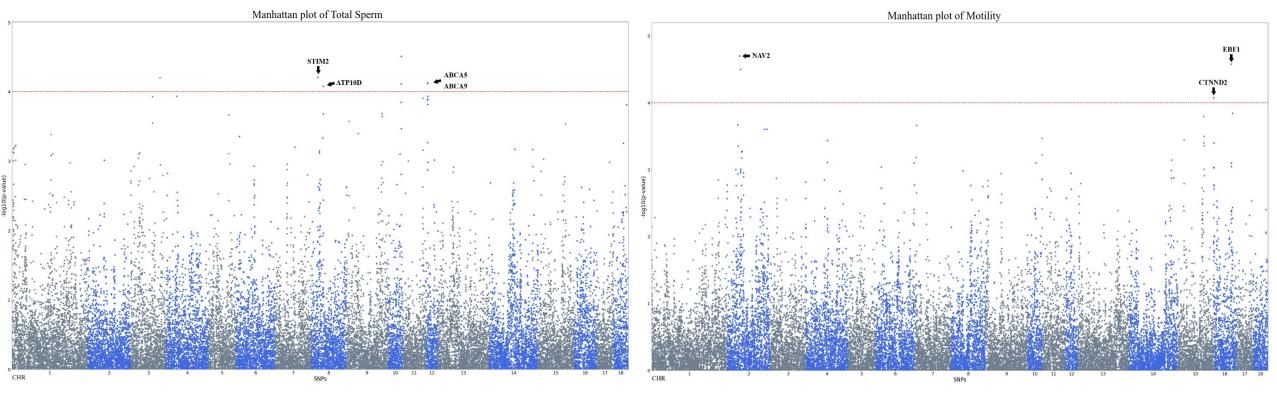
$$y_{ijklmn} = Breed_i + Year_j + Season_k + Stud_l + Age_m + Boar_ID_n + e_{ijklmn}$$
 \uparrow

Phenotype

Fixed effects

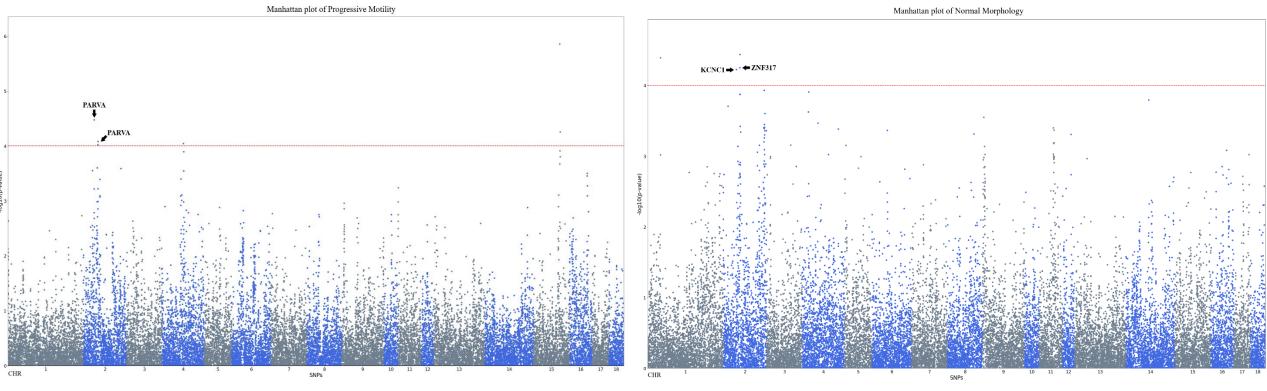
Linear Random Random covariate effect residual $N(0, \mathbf{G}\sigma_a^2)$

- AI-REML used; G matrix constructed following VanRaden (2008)
- **SNP effects** calculated with **POSTGSF90**; significance set at P < 0.0001; 'nearby' genes defined to be at most ±0.1 Mb distant from the significant SNP


Results and Discussion

Trait	Mean (SD)	CV _a , %	Total sperm	Motility	Progressive motility	Normal morphology
Total sperm, bill/collection	71.57 (24.28)	10.84	0.12 ; 0.45	-0.06	-0.39	0.14
Motility, %	74.64 (17.80)	4.25	0.00	0.04 ; 0.39	0.78	0.96
Progressive motility, %	51.70 (18.33)	9.18	-0.01	0.84	0.08 ; 0.43	0.90
Normal morphology, %	87.43 (5.72)	2.89	-0.03	0.45	0.45	0.19 ; 0.57

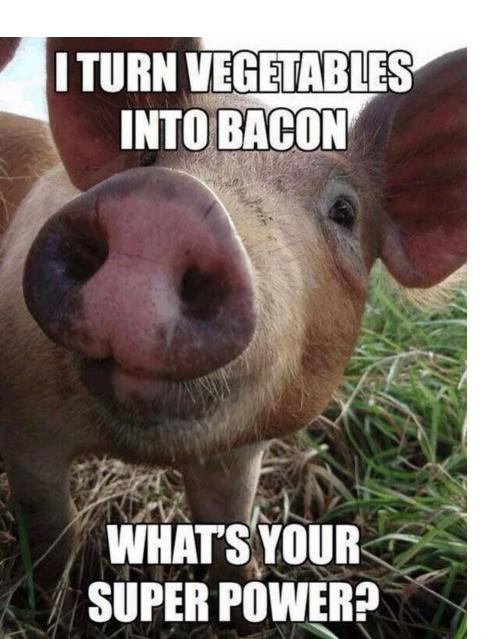
- **Diagonal**: **Heritability** (SE range 0.04-0.06); Repeatability (SE range 0.02-0.03)
- Below diagonal: phenotypic correlations (SE range 0.01-0.03)
- Above diagonal: genomic correlations (SE range 0.19-0.88)



Results and Discussion

- STIM2 gene involved in calcium channel regulation and regulates sperm physiology in mice (Darszon et al., 2012), ABCA5 and ABCA9 involved in lipid transport (Petry et al., 2006)
- **EBF1** lipogenic gene associated to fat deposition and circulating triglycerides (Taniguent) et al., 2014), while CTNND2 negatively affect sperm motility in humans if altered (Pachecol et al., 2011)

Results and Discussion


- PARVA gene involved in actin binding, critical for structure and function of cellular cytoskeleton
- **KCNC1** gene involved in the formation ion channels, playing a key role in regulation of sperm function, such as volume, motility and morphology (Barfield et al., 2005)

Take at home message

- The present study confirm the high complexity and polygenic nature of semen quality traits
- Semen quality traits are heritable and some of them expressed great genetic
 variability, representing the basis for inclusion of this group of traits as a subindex to
 maximize profitability and make informed decisions in selection nuclei

Giulio Visentin

Department of Veterinary Medical Sciences

giulio.visentin@unibo.it

THANK YOU!

www.unibo.it